Compact Fiber Laser May Enable Wearable Tech and Better Endoscopes
September 18, 2018 | OSAEstimated reading time: 3 minutes

By creating a new twist on fiber optic sensors, researchers in China have developed a smart, flexible photoacoustic imaging technique that may have potential applications in wearable devices, instrumentation and medical diagnostics.
Image Caption: Schematic of photoacoustic microscopy using a fiber-laser-based ultrasound sensor. Credit: Long Jin.
Lead researcher Long Jin from the Institute of Photonics Technology at Jinan University in Guangzhou will present the new fiber laser-based ultrasound sensor at the OSA Frontiers in Optics + Laser Science APS/DLS conference, being held September 16-20, 2018 in Washington, D.C. Jin will also present the results of a study using an in vivo photoacoustic microscope.
The presentation will be part of the “Advanced Microscopy” session, to be held at 2:30 p.m. on Monday, September 17 in the Jefferson West ballroom of the Washington Hilton hotel.
Their new technique relies on optical fiber technology to provide new sensors for photoacoustic imaging. It uses fiber-optic ultrasound detection, exploiting the acoustic effects on laser pulses via the thermoelastic effect -- temperature changes that occur because of the elastic strain.
“Conventional fiber optic sensors detect extremely weak signals by taking advantage of their high sensitivity via phase measurement,” said Jin. These same sorts of sensors are used in military applications to detect low-frequency (kilohertz) acoustic waves. But it turns out that they don’t work so well for ultrasound waves at the megahertz frequencies used for medical purposes because ultrasound waves typically propagate as spherical waves and have a very limited interaction length with optical fibers. The new sensors were specifically developed for medical imaging, Jin said, and can provide better sensitivity than the piezoelectric transducers in use today.
The group designed a special ultrasound sensor that’s essentially a compact laser built within the 8-micron-diameter core of a single-mode optical fiber. “It has a typical length of only 8 millimeters,” Jin said. “To build up the laser, two highly reflective grating mirrors are UV-written into the fiber core to provide optical feedback.”
This fiber then gets doped with ytterbium and erbium to provide sufficient optical gain at 1,530 nanometers. They use a 980-nanometer semiconductor laser as the pump laser.
“Such fiber lasers with a kilohertz-order linewidth -- the width of the optical spectrum -- can be exploited as sensors because they offer a high signal-to-noise ratio,” said research team member Yizhi Liang, an assistant professor at the Institute of Photonics Technology.
The ultrasound detection benefits from the combined technique because side-incident ultrasound waves deform the fiber, modulating the lasing frequency.
“By detecting the frequency shift, we can reconstruct the acoustic waveform,” Liang said.
The team does not demodulate the ultrasound signal, extracting the original information, using conventional interferometry-based methods or any additive frequency locking. Rather, they use another method, called "self-heterodyning," where the result of mixing two frequencies is detected. Here, they measure the radio frequency-domain beat note given by two orthogonal polarization modes of the fiber cavity. This demodulation also intrinsically guarantees a stable signal output.
The fiber laser-based ultrasound sensors offer opportunities for use in photoacoustic microscopy. The researchers used a focused 532-nanometer nanosecond pulse laser to illuminate a sample and excite ultrasound signals. They place a sensor in a stationary position near the biological sample to detect optically induced ultrasound waves.
“By raster scanning the laser spot, we can obtain a photoacoustic image of the vessels and capillaries of a mouse’s ear,” Jin said. “This method can also be used to structurally image other tissues and functionally image oxygen distribution by using other excitation wavelengths -- which takes advantage of the characteristic absorption spectra of different target tissues.”
Optical fibers are useful because they are tiny, lightweight, and intrinsically flexible, Jin added.
Image Caption: A photoacoustic microscope image of blood vessels and capillaries in a mouse’s ear (size: 2.7x2.7mm2). Credit: Long Jin.
“The development of our laser sensor is very encouraging because of its potential for endoscopes and wearable applications,” Jin said. “But current commercial endoscopic products are typically millimeters in dimension, which can cause pain, and they don’t work well within hollow organs with limited space.”
About The Optical Society
Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the
science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics
Suggested Items
Department of the Air Force Outlines Fiscal 2026 Budget Priorities to Congressional Panel
05/07/2025 | United States Space ForceThe three most senior civilian and military officials from the Department of the Air Force told a congressional panel May 6 that “the strategic landscape has shifted dramatically” and that the Air Force and Space Force need the resources and creative thinking, along with modern capabilities, to meet emerging threats.
RTX's Collins Aerospace Enhances Capabilities to Speed Marine Corps Decision-making in Battle
04/22/2025 | RTXCollins Aerospace, an RTX business, successfully demonstrated new technology that helps the military gather and use information from a wider range of sources at Project Convergence Capstone 5, a large-scale military exercise.
Real Time with... IPC APEX EXPO 2025: GreenSource's Growth and Future Developments
04/15/2025 | Real Time with...IPC APEX EXPOThings are looking bright for GreenSource. Michael Gleason shares an update on GreenSource's recent growth and upcoming changes. A recipient of a Defense Production Act Investment Program award, GreenSource is planning for new substrate capabilities. Current investments continue to enhance equipment and sustainability initiatives such as water quality. And their unique collaboration with the University of New Hampshire continues to aid their workforce development, despite recruitment challenges.
Acquisition of MADES Strengthens Cicor's Pan-European Leadership in the Aerospace & Defense Sector
04/03/2025 | CicorCicor Group announces that it has signed an agreement to acquire 100% of the shares of Spanish electronics company Malaga Aerospace, Defense & Electronics Systems S.A.U. (MADES). The company focuses on electronic solutions for the aerospace and defense industry, which accounts for well over half of its business.
Real Time with... IPC APEX EXPO 2025: Discover Comprehensive PCB Solutions with American Standard Circuits
04/01/2025 | Real Time with...IPC APEX EXPOAnaya Vardya, CEO of American Standard Circuits, highlights the company's dedication to offering complete PCB solutions. The company provides free design packages and caters to various sectors, including military and telecommunications.