A Self-Powered Heart Monitor Taped to the Skin
September 28, 2018 | RIKENEstimated reading time: 2 minutes
Scientists have developed a human-friendly, ultra-flexible organic sensor powered by sunlight, which acts as a self-powered heart monitor. Previously, they developed a flexible photovoltaic cell that could be incorporated into textiles. In this study, they directly integrated a sensory device, called an organic electrochemical transistor—a type of electronic device that can be used to measure a variety of biological functions—into a flexible organic solar cell. Using it, they were then able to measure the heartbeats of rats and humans under bright light conditions.
Self-powered devices that can be fit directly on human skin or tissue have great potential for medical applications. They could be used as physiological sensors for the real-time monitoring of heart or brain function in the human body. However, practical realization has been impractical due to the bulkiness of batteries and insufficient power supply, or due to noise interference from the electrical supply, impeding conformability and long-term operation.
The key requirement for such devices is a stable and adequate energy supply. A key advance in this study, published in Nature, is the use of a nano-grating surface on the light absorbers of the solar cell, allowing for high photo-conversion efficiency (PCE) and light angle independency. Thanks to this, the researchers were able to achieve a PCE of 10.5 percent and a high power-per-weight ratio of 11.46 watts per gram, approaching the “magic number” of 15 percent that will make organic photovoltaics competitive with their silicon-based counterparts. They demonstrated a PCE decrease of only 25 percent (from 9.82% to 7.33%) under repetitive compression test (900 cycles) and a higher PCE gain of 45 percent compared to non-grating devices under 60 degree light angle.
To demonstrate a practical application, sensory devices called organic electrochemical transistors were integrated with organic solar cells on an ultra-thin (1 μm) substrate, to allow the self-powered detection of heartbeats either on the skin or to record electrocardiographic (ECG) signals directly on the heart of a rat. They found that the device worked well at a lighting level of 10,000 lux, which is equivalent to the light seen when one is in the shade on a clear sunny day, and experienced less noise than similar devices connected to a battery, presumably because of the lack of electric wires.
According to Kenjiro Fukuda of the RIKEN Center for Emergent Matter Science, “This is a nice step forward in the quest to make self-powered medical monitoring devices that can be placed on human tissue. There are some important remaining tasks, such as the development of flexible power storage devices, and we will continue to collaborate with other groups to produce practical devices. Importantly, for the current experiments we worked on the analog part of our device, which powers the device and conducts the measurement. There is also a digital silicon-based portion, for the transmission of data, and further work in that area will also help to make such devices practical.”
The research was carried out by RIKEN in collaboration with researchers from the University of Tokyo.
Suggested Items
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (formerly DuPont Electronics), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.
Flexible Electronics Market to Reach $66.9 Billion by 2032, Growing at a CAGR of 9.2% from 2025
06/30/2025 | PRNewswireThe flexible electronics market is projected to reach $66.9 billion by 2032, up from an estimated $38.4 billion in 2025, growing at a robust CAGR of 9.2% during the forecast period.
All Flex Solutions Upgrades Lamination Layup
06/22/2025 | All Flex SolutionsAll Flex Solutions has invested in Ulrich Rotte lamination layup stations in their rigid flex layup area. The Ulrich Rotte stations automate the layup process by handling the lamination plates, which are heavy, and sequencing the layup process for the operators.
SEMI FlexTech Solicits Proposals for Advancing the Future of Flexible Hybrid Electronics
06/18/2025 | SEMIFlexTech, a SEMI Technology Community, today issued a Request for Proposals (RFP) to advance flexible hybrid electronics (FHE) technologies, including the development of advanced materials and additive processing.
Roll-to-Roll Technologies for Flexible Devices Set to Grow at 11.5% CAGR
06/11/2025 | GlobeNewswireAccording to the latest study from BCC Research, the “Global Markets for Roll-to-Roll Technologies for Flexible Devices” is expected to reach $69.8 billion by the end of 2029 at a compound annual growth rate (CAGR) of 11.5% from 2024 to 2029.