Shake, Rattle, and Roll to High Efficiency Photovoltaics
October 3, 2018 | Pennsylvania State UniversityEstimated reading time: 2 minutes

New insight into how a certain class of photovoltaic materials allows efficient conversion of sunlight into electricity could position these materials to replace traditional silicon solar cells. A study by researchers at Penn State reveals the unique properties of these inexpensive and quick-to-produce halide perovskites, information that will guide the development of next generation solar cells.
Image Caption: Using ultrafast infrared imaging techniques (bottom left), a team of researchers from Penn State has revealed that the remarkable electronic properties of halide perovskite photovoltaic materials properties arise from large-scale motion of atoms (bottom right) in their crystalline lattice (top). Credit: Asbury Lab, Penn State
“Since the development of silicon solar cells, which today can be found on rooftops and roadsides, researchers have sought new types of photovoltaic materials that are easier to process into solar cells,” said John Asbury, associate professor of chemistry at Penn State and senior author of the study. “This is because construction of silicon solar cells is complex and hard to scale-up to the level that would be needed for them to generate even 10 percent of our total demand for electricity.”
Because of these complications, researchers have been searching for less expensive alternatives to silicon solar cells that can be processed more quickly. They are particularly interested in materials that can be processed using a technique called roll-to-roll manufacturing, a technique similar to those used to print newspapers that enables low-cost, high-volume production. Such materials must be processed from solution, like ink printed on a page.
“After forty years of intense research for such materials, nothing has come close to silicon — except an exciting class of materials known as halide perovskites,” said Asbury. “Halide perovskites seem to have a unique tolerance for imperfections in their structures that allow them to efficiently convert sunlight into electricity when other materials with similar imperfections do not.”
What makes halide perovskites so tolerant of imperfections, however, was unknown prior to this study. The researchers used ultrafast infrared imaging technology to investigate how the structure and composition of these materials influence their ability to convert sunlight into electricity.
The researchers determined that halide perovskites have a unique ability to maintain their crystalline structure even while the atoms in their crystals undergo unusually large-scale vibrational motion. All materials experience vibrational motion of their atoms, which is typically suppressed by making the materials’ crystals very hard — like silicon — so that their atoms are rigidly held in place. But, according to the current study, halide perovskites are very soft, which allows their atoms to move around and contributes to their remarkable efficiency.
“What is interesting is that such large-scale atomic motions typically lead to a loss of crystalline structure in other materials, creating imperfections that drain excited state energy,” said Asbury. “But with halide perovskites, researchers can chemically substitute electronically charged atoms in the material to tune the amplitudes of such atomic scale motions. This will allow us to improve the performance and stability of halide perovskite materials.
“Currently, halide perovskites often contain toxic elements like lead and are not yet as stable as they will need to be to replace silicon solar cells,” said Asbury. “The insights from this study will enable us to create rules for designing new halide perovskites using roll-to-roll processing. This will guide the development of next generation perovskite materials that are more stable and that contain less toxic elements such as tin instead of lead.”
In addition to Asbury, the research team at Penn State includes Kyle Munson, Eric Kennehan, and Grayson Doucette. This work was funded by the National Science Foundation.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.