Army Research Lights the Way for New Materials
October 4, 2018 | U.S. Army Research LaboratoryEstimated reading time: 2 minutes
What happens when gold and silver just don't cut it anymore? You turn to metallic alloys, which are what Army researchers are using to develop new designer materials with a broad range of capabilities for our Soldiers.
Image Caption: U.S. Army Research Laboratory scientists Dr. David Baker and Dr. Joshua McClure pose in their lab at the Adelphi Laboratory Center, where they are working to lighten the load and enhance the power of Soldier devices used on the battlefield. (U.S. Army Photo by Jhi Scott)
This is exactly what scientists Dr. David Baker and Dr. Joshua McClure from the U.S. Army Research Laboratory are doing to lighten the load and enhance the power of Soldier devices used on the battlefield.
Their research, conducted in collaboration with Prof. Marina Leite and Dr. Chen Gong at the University of Maryland and Prof. Alexandre Rocha at the Universidade Estadual Paulista in Brazil, was recently featured on the cover of the Sept. 4 issue of Advanced Optical Materials.
The research paper, "Band Structure Engineering by Alloying for Photonics," focuses on control of the optical and plasmonic properties of gold and silver alloys by changing alloy chemical composition.
"We demonstrated and characterized gold/silver alloys with tuned optical properties, known as surface plasmon polaritons, which can be used in a wide array of photonic applications," Baker said. "The fundamental effort combined experiment and theory to explain the origin of the alloys' optical behavior. The work highlights that the electronic structure of the metallic surface may be engineered upon changing the alloy's chemical composition, paving the way for integration into many different applications where individual metals otherwise fail to have the right characteristics."
The research focused on combining experimental and theoretical efforts to elucidate the alloyed material's electronic structure with direct implications for the optical behavior.
According to the researchers, the insights gained enable one to tune the optical dispersion and light-harvesting capability of these materials, which can outperform systems made of individual elements like gold.
"The insights of the paper are useful to Soldiers because they can be applied to a variety of applications including, but not limited to: photocatalytic reactions, sensing/detection and nanoscale laser applications," McClure said. "When tuned properly, the integrated alloyed materials can lead to reductions in the weight of energy harvesting devices, lower power requirements for electronics and even more powerful optical sensors."
The researchers are currently looking at other metallic alloys and anticipate that their combined experimental and computational approach may be extended to other materials, including nonmetallic systems.
"The field of plasmonics enables potentially paradigm shifting characteristics with applications to the warfighter; this includes everything from computation, to energy harvesting, to communication, and even directed energy," Baker said. "However, researchers in these fields are limited to a handful of elements on the periodic table; gold and silver are two of the most commonly studied. This lack of options limits the available properties for technology development. By knowing the fundamental optical and electronic properties of alloys, we can develop new designer materials with a broader range of capabilities."
For the researchers, having their work selected to be on the cover of the journal is very exciting personally and professionally, and brings to light what they are developing for the success of the future Soldier.
They noted that this acknowledgement highlights that the broader scientific community recognizes the value of their contributions and research direction, and it is clear that their methods and alloyed materials are becoming increasingly more important and relevant for a variety of photonic applications.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Sealed for Survival: Potting Electronics for the Toughest Environments
10/29/2025 | Beth Massey, MacDermid Alpha Electronics SolutionsElectronics deployed in harsh conditions face relentless threats from vibration, impact, chemical contaminants, airborne pollutants, and moisture, conditions that can quickly lead to failure without robust protection. Potting, the process of encapsulating electronics in a protective polymer, is a widely used strategy to safeguard devices from both environmental and mechanical hazards.
Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
10/28/2025 | Kurt Palmer -- Column: Driving InnovationRigid-flex printed circuit boards are a highly effective solution for placing complex circuitry in tight, three-dimensional spaces. They are now indispensable across a range of industries, from medical devices and aerospace to advanced consumer electronics, helping designers make the most efficient use of available space. However, their unique construction—combining rigid and flexible materials—presents a fundamental challenge for PCB manufacturers.
SMTAI 2025 Review: Reflecting on a Pragmatic and Forward-looking Industry
10/27/2025 | Marcy LaRont, I-Connect007Leaving the show floor on the final afternoon of SMTA International last week in Rosemont, Illinois, it was clear that the show remains a grounded, technically driven event that delivers a solid program, good networking, and an easy space to commune with industry colleagues and meet with customers.
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).