Superconducting at the Speed of Light
October 12, 2018 | University of AmsterdamEstimated reading time: 3 minutes

Researchers at the Universities of Twente and Amsterdam team up to unmask elusive Majorana modes as they discover electrons pairing up while they fly through the interior of a crystal as if they move at the speed of light.
Sightings of Majorana modes are rare and have up to now always involved states at the edge of special, topological materials. As reported in the 1 October issue of the top title Nature Materials, a new discovery—made in a crystal of antimony-doped bismuth—now shows that the bulk electronic states of a three-dimensional Dirac semimetal can also play host to topological superconductivity and the related Majorana zero-modes. As fits the mysterious disappearance of their name-giver, these modes are detected as a missing step in a staircase of excitations of the superconductor upon illumination. As these states are protected by fundamental symmetries, their discovery on the inside of a crystal, hidden from the disturbing influences of the environment, is a valuable next step towards their application in topological quantum computation.
Spotting Topological Superconductivity
If quantum phases of matter were birds, the spotter’s field guide would devote its first pages to the subject of topology. As the Nobel committee recognized in 2016, topology is the organizing principle behind myriad quantum phenomena of interest both to fundamental scientists and engineers interested in disruptive new quantum computation technologies. Topological crystals possess electrons which appear to be massless and to move at the speed of light, and often display special properties at their edges or surfaces. In a new development, researchers from the universities of Twente and Amsterdam, as part of a Dutch national research programme into so-called topological insulators, have combined forces to show that inside a tuned crystal of bismuth hide the Majorana modes signaling topological superconductivity.
While it may not be found in your kitchen cupboard at home, the heavy atoms of bismuth—in the form of pure crystals—have served as a test set-up for research into the behavior of electrons in a solid for almost a hundred years. For example, it was in bismuth that it was discovered that the electrical resistance of a material can change or even oscillate by applying or changing a magnetic field, a phenomenon which has grown into an indispensable tool in modern materials research.
Most of the electrons in a crystal of bismuth are stuck on the atoms, and only very few are free to roam, conducting electricity like the electrons in a metal. However, adding a pinch of antimony (just 3%) to bismuth during the growth of the crystal creates a new kind of metal called a Dirac semimetal. The number of electrons is so low that you can barely call it a metal, but still the material conducts, even behaving as if the electrons inside were moving at the speed of light.
When Spin and Momentum Lock Together
Besides being carriers of charge, electrons also have spin, a property in which a quantum mechanical effect leads them to possess a magnetic moment. Researchers have now shown that the direction of this spin in a Dirac semimetal is locked to the direction in which the electron moves. This effect is associated with the special topology (think ‘shape’) of the connectivity of the electronic energy levels in the material. Until now electrical device measurements have only shown this topological behaviour at the surfaces or edges of materials known as topological insulators. Devices fabricated in the Twente MESA+ cleanrooms have now shown that the interior, bulk states of a semimetal also show this behaviour. As the interior of a material is more robust and less sensitive to dirt or external influences than an edge or surface, this looks to be a technologically-relevant step forward.
In the October 1 issue of the journal Nature Materials, the researchers report on their findings. Using nanotechnology, superconducting electrodes were applied to a thin crystal consisting of 97% bismuth and 3% antimony, which had been extensively characterized using synchrotron radiation and in strong magnetic fields. At very low temperatures – close to absolute zero – a current was found to flow through the crystal without any resistance, from one superconducting electrode to the other. On additionally illuminating the crystal with radio waves, the researchers discovered that a part of the supercurrent consists of so-called Majorana particles. These rare objects arise in topological superconductors, in which the spin and current of the electrons are locked together, and are the very same particles in which quantum researchers are interested for application in topological quantum computers. An accompanying News & Views item from two US researchers in the same issue of Nature Materials called these findings 'truly desirable and inspiring', a compliment that a researcher does not hear from colleagues every day.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.