Energy Harvesting and Innovative Inputs Highlight Tech Show Gadgetry
October 18, 2018 | Dartmouth CollegeEstimated reading time: 1 minute

Wearable technology developed at Dartmouth College with the potential to change the way we live and work was introduced at the 31st ACM User Interface Software and Technology Symposium (UIST 2018).
The devices presented by Dartmouth include a battery-free energy harvester and a novel conductive system for smartwatches. The research projects, from Dartmouth’s DartNets and XDiscovery labs, demonstrate the innovative thinking and technical skills essential for developing the next generation of “smart” wearable devices.
Self-Powered Gesture Recognition
Finger gestures facilitate our interaction with small devices. However, gesture recognition can consume a relatively large amount of power. As technology developers look to produce smaller devices that require little or no battery power—like phones, cameras and other displays—Dartmouth’s self-powered gesture recognition system uses ambient light to power wearables and to operate for “always-on” recognition of inputs without the need for batteries. Through the use of a new algorithm, the system can even overcome the technical challenge presented by unpredictable light conditions.
Indutivo: Using inductive Sensing to Interact with Wearables
As wearable technology becomes smaller, it can become even more difficult to interact with the devices. Indutivo solves this problem by turning just about any conductive object into an input device for smartwatches. By sliding, rotating and hinging objects against an enabled smartwatch, this new technology opens up a new world of input possibilities through the use of common objects like paperclips or keys.
Orecchio: Extending Body Language to the Human Ear
While body language is an effective tool for human communications, it can have limitations. Orecchio expands the possibilities for communicating with others by employing the human ear to display emotions like happiness, boredom and excitement. The device works by activating the ear’s auricle—the visible part of the ear—with a wearable device composed of miniature motors, custom-made robotic arms and other electronic components. Orecchio’s developers at Dartmouth say the prototype is being greeted by testers as “a welcome addition to the vocabulary of human body language.”
Dartmouth’s DartNets lab is co-directed by associate professor of computer science, Xia Zhou. The XDiscovery lab is led by assistant professor of computer science, Xing-Dong Yang.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
Intel Announces Key Leadership Appointments to Accelerate Innovation and Strengthen Execution
09/09/2025 | Intel CorporationIntel Corporation today announced a series of senior leadership appointments that support the company’s strategy to strengthen its core product business, build a trusted foundry, and foster a culture of engineering across the business.
DARPA, State of New Mexico Establish Framework to Advance Quantum Computing
09/08/2025 | DARPAAs part of the Quantum Benchmarking Initiative (QBI), DARPA signed an agreement with the State of New Mexico’s Economic Development Department to create the Quantum Frontier Project.
LPKF Strengthens LIDE Technology Leadership with New Patent Protection in Korea
09/04/2025 | LPKFLPKF Laser & Electronics SE today announced that its groundbreaking LIDE (Laser Induced Deep Etching) technology has received additional patent protection in Korea through the Korean Patent Office (KPCA), effective September 1, 2025.
UHDI Fundamentals: UHDI Technology and Industry 4.0
09/03/2025 | Anaya Vardya, American Standard CircuitsUltra high density interconnect (UHDI) technology is rapidly transforming how smart systems are designed and deployed in the context of Industry 4.0. With its capacity to support highly miniaturized, high-performance, and densely packed electronics, UHDI is a critical enabler of the smart, connected, and automated industrial future. Here, I’ll explore the synergy between UHDI and Industry 4.0 technologies, highlighting applications, benefits, and future directions.