Molecular Memory Can be Used to Increase the Memory Capacity of Hard Disks
October 19, 2018 | University of JyväskyläEstimated reading time: 2 minutes

Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized. The results may be used in the future to massively increase the storage capacity of hard disks without increasing their physical size.
Molecular Memory Can be Used to Increase the Memory Capacity of Hard Disks
Single-molecule magnets are molecules capable of remembering the direction of a magnetic field that has been applied to them over relatively long periods of time once the magnetic field is switched off. Thus, one can “write” information into molecules. Single-molecule magnets have potential applications, for example, as high-density digital storage media and as parts of microprocessors in quantum computers. Practical applications have, however, been greatly hindered by the fact that single-molecule magnets are operational only at extremely low temperatures. Their intrinsic memory properties often vanish if they are heated more than a few degrees above absolute zero (–273°C); therefore, single-molecule magnets can be only studied under laboratory conditions by cooling them with liquid helium.
More Favorable Conditions for Technological Applications
Researchers have now, for the first time, managed to synthesize and characterize a single-molecule magnet which retains its memory properties above the temperature of liquid helium (–196°C). The magnet can be called the first high-temperature single-molecule magnet.
- When considering our everyday life, liquid nitrogen is extremely cold. However, compared to liquid helium, which has so far been required to study single-molecule magnets, the liquid nitrogen temperature is a huge leap upwards. Liquid nitrogen is more than 300 times cheaper than liquid helium and much more readily available, enabling technological applications. Therefore, the research constitutes an important scientific milestone, describes postdoctoral researcher Akseli Mansikkamäki from the Department of Chemistry of the University of Jyväskylä.
New Insights from Computations
The new dysprosium metallocene compound is the culmination of several years of research. The project has required the development of new approaches in organometallic lanthanide chemistry and deep insights of the relationship between the microscopic electronic structure and magnetic properties of the studied systems.
- Computational methods based on quantum mechanics and the theory of relativity play an important role in the characterization and design of new single-molecule magnets. The large computational resources available today have enabled, for example, to clarify the interaction between crystal vibrations and the electronic structure of molecules studied in the present work, Mansikkamäki explains.
The research also provides new insights and guidelines how to further improve the magnetic properties of single-molecule magnets and how to bring technological applications closer to reality.
The research project has been led by professor Richard Layfield at the University of Sussex, UK. The synthetic work and characterization of the prepared compounds was carried out at Layfield’s research group and magnetic measurements were performed at Sun Yat-sen University, Guangzhou , PRC under the leadership of professor Ming-Liang Tong. Postdoctoral researcher Akseli Mansikkamäki carried out theoretical calculations and analyses at the Department of Chemistry of the University of Jyväskylä. In Finland, the research has been financed by the Academy of Finland. Computational resources were provided by the CSC-IT Center for Science and the University of Jyväskylä.
Suggested Items
Nolan’s Notes: Moving Forward With Confidence
06/03/2025 | Nolan Johnson -- Column: Nolan's NotesWe’re currently enjoying a revitalized and dynamic EMS provider market with significant growth potential. Since December 2024, the book-to-bill has been extremely strong and growing. Starting with a ratio of 1.24 in December, book-to-bill has continued to accelerate to a 1.41 in April. Yet, there is a global economic restructuring taking place. To say that the back-and-forth with tariffs and trade deals makes for an uncertain market is an understatement. While we may be in a 90-day tariff pause among leading economic nations, the deadline is quickly approaching and that leaves many of you feeling unsettled about what to expect.
Mycronic High Flex Changes Division Name to PCB Assembly Solutions
05/20/2025 | MycronicMycronic AB, the leading Sweden-based electronics assembly solutions provider, announced that its division formerly known as High Flex will now operate under the name PCB Assembly Solutions.
SolderKing Achieves the Prestigious King’s Award for Enterprise in International Trade
05/06/2025 | SolderKingSolderKing Assembly Materials Ltd, a leading British manufacturer of high-performance soldering materials and consumables, has been honoured with a King’s Award for Enterprise, one of the UK’s most respected business honours.
Foxconn's Tiger Leap Combining Nature and Technology in Ecological Roof Garden
04/23/2025 | FoxconnHon Hai Technology Group, the world's largest technology manufacturing and service provider, has actively responded to the United Nations Sustainable Development Goals (SDGs).
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.