The ‘Relativity’ of High-Q Capacitors
October 23, 2018 | Power PREstimated reading time: 8 minutes
High-Q capacitors vary from standard capacitors in design. To achieve the lowest losses, companies such as Johanson utilize the lowest-loss dielectrics, inks and electrode options.
For example, most low-cost commodity capacitors utilize nickel electrodes. However, nickel is a poor conductor known for high loss at RF and microwave frequencies.
Silver and copper electrodes are superior and perform better than nickel and are used for most High Q applications. This type of electrode has the added advantage that it does not create a magnetic field like nickel. This is important factor for applications such as MRI receiver coils where strong magnetic fields are involved.
For the highest power RF applications, a number of leading manufacturers offer pure palladium electrodes. However, silver is a superior conductor when compared to palladium at higher frequencies. For this reason, Johanson incorporates silver electrodes in its ultra-high-Q (lowest ESR loss) offering, the E-Series multilayer RF capacitors in their high power standard 1111, 2525 and 3838 size capacitors.
Capacitors in Vertical Orientation
Even minor details like the orientation of the capacitor in the tape reels can have a direct impact on the performance of a circuit.
Traditionally, high-Q capacitors are available primarily in a horizontal electrode configuration when mounted in tape and reels. Now, manufacturers such as Johanson offer the MLCC capacitors in both horizontal and vertical electrode orientation configurations.
However, mounting capacitors in a vertical configuration is also an industry “trick” that effectively extends the usable frequency range of capacitors.
In addition to the SRF (which is based on the given physical size/construction and a given capacitance value), capacitors also exhibit parallel resonant frequencies (PRF). As a rule of thumb, PRF is approximately double the SRF.
At the PRF, the transmission impedance goes relatively high, and the capacitor is very high loss around this frequency.
By mounting the capacitor in a vertical position instead, the odd PRFs are eliminated (e.g., the 1st, 3rd, 5th, etc.). This pushes the first PRF significantly higher in frequency which allows the capacitor to be used at significantly higher frequencies.
High-Q Relativity
If there is a lesson from this discussion of High Q capacitors, it is that selecting the ideal MLC capacitor requires more than a voltage, capacitance value and tolerance. This may also explain why a capacitance value from one supplier may not be a one to one correspondence with another supplier in critical matching circuits. The design and quality/consistency of manufacturing plays just as big a role, as does the type of testing to verify performance.
“Don’t assume that because the capacitor is labeled ‘high-Q’ it is going to deliver the required performance,” concludes Horton. “These capacitors play a critical role in RF transmission and reception of military, medical and industrial electronics, so they must perform as expected, optimized to minimize energy loss and variation from one batch to another. If not, these electronics may not perform as expected in the field.”
Page 2 of 2Suggested Items
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
Hands-On Demos Now Available for Apollo Seiko’s EF and AF Selective Soldering Lines
06/30/2025 | Apollo SeikoApollo Seiko, a leading innovator in soldering technology, is excited to spotlight its expanded lineup of EF and AF Series Selective Soldering Systems, now available for live demonstrations in its newly dedicated demo room.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Fresh PCB Concepts: Assembly Challenges with Micro Components and Standard Solder Mask Practices
06/26/2025 | Team NCAB -- Column: Fresh PCB ConceptsMicro components have redefined what is possible in PCB design. With package sizes like 01005 and 0201 becoming more common in high-density layouts, designers are now expected to pack more performance into smaller spaces than ever before. While these advancements support miniaturization and functionality, they introduce new assembly challenges, particularly with traditional solder mask and legend application processes.
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.