The ‘Relativity’ of High-Q Capacitors
October 23, 2018 | Power PREstimated reading time: 8 minutes
High-Q capacitors vary from standard capacitors in design. To achieve the lowest losses, companies such as Johanson utilize the lowest-loss dielectrics, inks and electrode options.
For example, most low-cost commodity capacitors utilize nickel electrodes. However, nickel is a poor conductor known for high loss at RF and microwave frequencies.
Silver and copper electrodes are superior and perform better than nickel and are used for most High Q applications. This type of electrode has the added advantage that it does not create a magnetic field like nickel. This is important factor for applications such as MRI receiver coils where strong magnetic fields are involved.
For the highest power RF applications, a number of leading manufacturers offer pure palladium electrodes. However, silver is a superior conductor when compared to palladium at higher frequencies. For this reason, Johanson incorporates silver electrodes in its ultra-high-Q (lowest ESR loss) offering, the E-Series multilayer RF capacitors in their high power standard 1111, 2525 and 3838 size capacitors.
Capacitors in Vertical Orientation
Even minor details like the orientation of the capacitor in the tape reels can have a direct impact on the performance of a circuit.
Traditionally, high-Q capacitors are available primarily in a horizontal electrode configuration when mounted in tape and reels. Now, manufacturers such as Johanson offer the MLCC capacitors in both horizontal and vertical electrode orientation configurations.
However, mounting capacitors in a vertical configuration is also an industry “trick” that effectively extends the usable frequency range of capacitors.
In addition to the SRF (which is based on the given physical size/construction and a given capacitance value), capacitors also exhibit parallel resonant frequencies (PRF). As a rule of thumb, PRF is approximately double the SRF.
At the PRF, the transmission impedance goes relatively high, and the capacitor is very high loss around this frequency.
By mounting the capacitor in a vertical position instead, the odd PRFs are eliminated (e.g., the 1st, 3rd, 5th, etc.). This pushes the first PRF significantly higher in frequency which allows the capacitor to be used at significantly higher frequencies.
High-Q Relativity
If there is a lesson from this discussion of High Q capacitors, it is that selecting the ideal MLC capacitor requires more than a voltage, capacitance value and tolerance. This may also explain why a capacitance value from one supplier may not be a one to one correspondence with another supplier in critical matching circuits. The design and quality/consistency of manufacturing plays just as big a role, as does the type of testing to verify performance.
“Don’t assume that because the capacitor is labeled ‘high-Q’ it is going to deliver the required performance,” concludes Horton. “These capacitors play a critical role in RF transmission and reception of military, medical and industrial electronics, so they must perform as expected, optimized to minimize energy loss and variation from one batch to another. If not, these electronics may not perform as expected in the field.”
Page 2 of 2Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
BTU International Earns 2025 Step-by-Step Excellence Award for Its Aqua Scrub™ Flux Management System
10/29/2025 | BTU International, Inc.BTU International, Inc., a leading supplier of advanced thermal processing equipment for the electronics manufacturing market, has been recognized with a 2025 Step-by-Step Excellence Award (SbSEA) for its Aqua Scrub™ Flux Management Technology, featured on the company’s Pyramax™ and Aurora™ reflow ovens.
On the Line With… Ultra HDI Podcast—Episode 7: “Solder Mask: Beyond the Traces,” Now Available
10/31/2025 | I-Connect007I-Connect007 is excited to announce the release of the seventh episode of its 12-part podcast series, On the Line With… American Standard Circuits: Ultra HDI. In this episode, “Solder Mask: Beyond the Traces,” host Nolan Johnson sits down with John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, to explore the essential role that solder mask plays in the Ultra HDI (UHDI) manufacturing process.
Rehm Wins Mexico Technology Award for CondensoXLine with Formic Acid
10/17/2025 | Rehm Thermal SystemsModern electronics manufacturing requires technologies with high reliability. By using formic acid in convection, condensation, and contact soldering, Rehm Thermal Systems’ equipment ensures reliable, void-free solder joints — even when using flux-free solder pastes.
Indium Experts to Deliver Technical Presentations at SMTA International
10/14/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly industry, Indium Corporation experts will share their technical insight on a wide range of innovative solder solutions at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
Knocking Down the Bone Pile: Revamp Your Components with BGA Reballing
10/14/2025 | Nash Bell -- Column: Knocking Down the Bone PileBall grid array (BGA) components evolved from pin grid array (PGA) devices, carrying over many of the same electrical benefits while introducing a more compact and efficient interconnect format. Instead of discrete leads, BGAs rely on solder balls on the underside of the package to connect to the PCB. In some advanced designs, solder balls are on both the PCB and the BGA package. In stacked configurations, such as package-on-package (PoP), these solder balls also interconnect multiple packages, enabling higher functionality in a smaller footprint.