Materials for the Photonics of Tomorrow
October 24, 2018 | University of BremenEstimated reading time: 3 minutes

Motivated by the success story of the super-thin “miracle material” graphene, which was awarded the Nobel Prize for Physics a few years ago, researchers in chemistry and physics today are continuously discovering new, atomically thin materials. They consist of lattices of atoms that are only slightly thicker than the individual atoms themselves. The pioneer graphene is composed of a single layer of carbon atoms. Although it is excellently suited for electronics, it is not suitable for optical applications. Now there are new atomically thin materials that are suitable for highly miniaturized and extremely energy-efficient optical components. It is remarkable how easy and inexpensive the new materials can be manufactured: they can, for example, be removed with adhesive film from so-called volume crystals.
Wide Range of Applications
A central idea here is the principle of the “Lego construction kit”: the properties of luminescent and electrically conductive atomically thin materials, such as transition metal dichalcogenides (TMDs), are combined with graphene by stacking them directly on top of each other. Despite loose cohesion, these structures exhibit enormous mechanical stability. The TMDs they contain not only shine very well, but also absorb light and can convert it into electricity. This is why the first practical applications are already available in very sensitive sensors. They can also be used in flexible solar panels or smartphone displays. By using them in highly miniaturized lasers, new components can be realized that are needed for the high-speed Internet of the next generation. “With these materials, we can provide a whole pool of components for innovations in engineering and technology. The properties of these atomically thin flakes are highly interesting in light of the growing demand for renewable and efficient energy sources,” explains Frank Jahnke, Professor of Theoretical Physics. Together with Dr. Matthias Florian and Dr. Alexander Steinhoff, he conducted the investigations at the University of Bremen.
Atomic Physics in Two Dimensions
For physicists, the atomically thin layers also mean a radical rethink. In contrast to conventional atomic physics, which always refers to a three-dimensional space, everything here takes place in only two spatial directions. In order to make the layers glow, the electrons in the atoms must be excited. Positive and negative charges then generate new composite particles or artificial atoms, which can only move in the plane of the thin network. Physicists now have to formulate a two-dimensional atomic physics that presents them with numerous puzzles. In particular, they want to understand the characteristic spectral lines of the particles, which they can measure with spectroscopic methods – similar to the investigation of gas molecules in our atmosphere. “Although these particle complexes in crystals are much more short lived than real atoms and molecules, they can be made visible in modern ultrafast experiments,” explains junior researcher Dr. Alexander Steinhoff.
Research into Spectral Fingerprint of Materials
In close cooperation with colleagues from experimental physics in Berlin and Houston, Texas, the team from the University of Bremen has combined computer simulations with state-of-the-art spectroscopy to obtain the spectral fingerprint of these composite particles. They have shown that the inner structure of the four-particle complexes gives rise to new quantum states. These go far beyond the previously known laws of atomic and molecular physics, because they generate a rich spectral signature.
From Basic Research to Application
The scientists have now published their discoveries in the renowned journal “Nature Physics.” With their findings, they help to bring order to the so-called line zoo of the new materials, because they provide colleagues in their research field with a recipe for identifying further lines. The results are interesting for basic research because they go far beyond the usual analogy between solid-state and atomic physics. The researchers are also keeping a close eye on the applications: as a next step, they plan to produce functional prototypes of such components.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.