Mussel-Inspired Defect Engineering Enhances the Mechanical Strength of Graphene Fibers
October 24, 2018 | KAISTEstimated reading time: 2 minutes
Researchers demonstrated the mussel-inspired reinforcement of graphene fibers for the improvement of different material properties. A research group under Professor Sang Ouk Kim applied polydopamine as an effective infiltrate binder to achieve high mechanical and electrical properties for graphene-based liquid crystalline fibers.
This bio-inspired defect engineering is clearly distinguishable from previous attempts with insulating binders and proposes great potential for versatile applications of flexible and wearable devices as well as low-cost structural materials. The two-step defect engineering addresses the intrinsic limitation of graphene fibers arising from the folding and wrinkling of graphene layers during the fiber-spinning process.
Bio-inspired graphene-based fiber holds great promise for a wide range of applications, including flexible electronics, multifunctional textiles, and wearable sensors. In 2009, the research group discovered graphene oxide liquid crystals in aqueous media while introducing an effective purification process to remove ionic impurities. Graphene fibers, typically wet-spun from aqueous graphene oxide liquid crystal dispersion, are expected to demonstrate superior thermal and electrical conductivities as well as outstanding mechanical performance.
Nonetheless, owing to the inherent formation of defects and voids caused by bending and wrinkling the graphene oxide layer within graphene fibers, their mechanical strength and electrical/thermal conductivities are still far below the desired ideal values. Accordingly, finding an efficient method for constructing the densely packed graphene fibers with strong interlayer interaction is a principal challenge.
Professor Kim's team focused on the adhesion properties of dopamine, a polymer developed with the inspiration of the natural mussel, to solve the problem. This functional polymer, which is studied in various fields, can increase the adhesion between the graphene layers and prevent structural defects.
Professor Kim’s research group succeeded in fabricating high-strength graphene liquid crystalline fibers with controlled structural defects. They also fabricated fibers with improved electrical conductivity through the post-carbonization process of polydopamine.
Based on the theory that dopamine with subsequent high temperature annealing has a similar structure with that of graphene, the team optimized dopamine polymerization conditions and solved the inherent defect control problems of existing graphene fibers.
They also confirmed that the physical properties of dopamine are improved in terms of electrical conductivity due to the influence of nitrogen in dopamine molecules, without damaging the conductivity, which is the fundamental limit of conventional polymers.
Professor Kim, who led the research, said, "Despite its technological potential, carbon fiber using graphene liquid crystals still has limits in terms of its structural limitations." This technology will be applied to composite fiber fabrication and various wearable textile-based application devices." This work, in which Dr. In-Ho Kim participated as first author was selected as a front cover paper of Advanced Materials on October 4.
This research was supported by the National Creative Research Initiative (CRI) Center for Multi-Dimensional Directed Nanoscale Assembly and the Nanomaterial Technology Development Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT.
Figure 1. Cross-section SEM image of pure graphene fiber (left) and that of graphene fiber after two-stage defect control using polydopamine (middle and right).
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Honeywell Advances Technology for the European Defense Sector
04/29/2025 | HoneywellHoneywell has received two research grants to execute projects aimed at advancing avionics and cybersecurity capabilities for the European defense sector.
Real Time with... IPC APEX EXPO 2025: Winner of the IPC Best Student Poster Award
04/29/2025 | Real Time with...IPC APEX EXPOSebastian Carrillo, winner of the Best Student Technical Poster Award, shares insights on his research in nanotechnology and plasmonics. His work on a metal insulator nano array focuses on light-matter interactions at the nanoscale. With advancements in manufacturing, applications include sensing technologies and photovoltaic systems. Sebastian discusses his project involving simulations and optical experiments. His career goals are in research, and he encourages students to seize academic opportunities.
ITRI Named a Top 100 Global Innovator for the Ninth Time
04/28/2025 | PRNewswireThe Industrial Technology Research Institute (ITRI) was officially honored at the 2025 Top 100 Global Innovators Award Ceremony hosted by Clarivate in Taipei.
Hon Hai Research Institute's Fourth-generation Semiconductor Application Reaches a New Milestone
04/21/2025 | FoxconnHon Hai Research Institute ( HHRI ) Semiconductor Research Institute has conducted cross-border cooperation with Yang Ming Chiao Tung University and the University of Texas at Austin to invest in forward-looking research on fourth-generation semiconductors.