Light-Bending Tech Shrinks Kilometers-Long Radiation System to Millimeter Scale
October 26, 2018 | Purdue UniversityEstimated reading time: 2 minutes

The DESY accelerator facility in Hamburg, Germany, goes on for miles to host a particle making kilometer-long laps at almost the speed of light. Now researchers have shrunk such a facility to the size of a computer chip.
Image Caption: A new device bends visible light inside a crystal to produce "synchrotron" radiation (blue and green) via an accelerating light pulse (red) on a scale a thousand times smaller than massive facilities around the world. (University of Michigan image/Meredith Henstridge)
A University of Michigan team in collaboration with Purdue University created a new device that still accommodates speed along circular paths, but for producing lower light frequencies in the terahertz range of applications such as identifying counterfeit dollar bills or distinguishing between cancerous and healthy tissue.
"In order to get light to curve, you have to sculpt every piece of the light beam to a particular intensity and phase, and now we can do this in an extremely surgical way," said Roberto Merlin, the University of Michigan's Peter A. Franken Collegiate Professor of Physics.
The work is published in the journal Science. Ultimately, this device could be conveniently adapted for a computer chip.
"The more terahertz sources we have, the better. This new source is also exceptionally more efficient, let alone that it's a massive system created at the millimeter scale," said Vlad Shalaev, Purdue's Bob and Anne Burnett Distinguished Professor of Electrical and Computer Engineering.
The device that Michigan and Purdue researchers built generates so-called "synchrotron" radiation, which is electromagnetic energy given off by charged particles, such as electrons and ions, that are moving close to the speed of light when magnetic fields bend their paths.
Several facilities around the world, like DESY, generate synchrotron radiation to study a broad range of problems from biology to materials science.
But past efforts to bend light to follow a circular path have come in the form of lenses or spatial light modulators too bulky for on-chip technology.
A team led by Merlin and Meredith Henstridge, now a postdoctoral researcher at the Max Planck Institute for the Structure and Dynamics of Matter, substituted these bulkier forms with about 10 million tiny antennae printed on a lithium tantalite crystal, called a "metasurface," designed by the Michigan team of Anthony Grbic and built by Purdue researchers.
The researchers used a laser to produce a pulse of visible light that lasts for one trillionth of a second. The array of antennae causes the light pulse to accelerate along a curved trajectory inside the crystal.
Instead of a charged particle spiraling for kilometers on end, the light pulse displaced electrons from their equilibrium positions to create "dipole moments." These dipole moments accelerated along the curved trajectory of the light pulse, resulting in the emission of synchrotron radiation much more efficiently at the terahertz range.
"This isn't being built for a computer chip yet, but this work demonstrates that synchrotron radiation could eventually help develop on-chip terahertz sources," Shalaev said.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Pusan National University Scientists Develop Self-Deploying Material for Next-Gen Robotics
09/02/2025 | PRNewswireThe field of robotics has transformed drastically in this century, with a special focus on soft robotics. In this context, origami-inspired deployable structures with compact storage and efficient deployment features have gained prominence in aerospace, architecture, and medical fields.
University Of Minnesota Team Claims Victory In Bright Manufacturing Challenge 2025 Round 1
08/19/2025 | EMACThe Electronics Manufacturing & Assembly Collaborative (EMAC) recently announced that Team "Rise and Grind Crew" from the University of Minnesota has emerged victorious in Round 1 of the Bright Manufacturing Challenge 2025.
IIT Kharagpur Forge Strategic Partnership with Swansea University in Advance Smart Manufacturing and Materials Research
06/18/2025 | IIT KharagpurIn a significant step towards global academic and industrial collaboration, Swansea University and the Indian Institute of Technology Kharagpur (IIT KGP) signed a Memorandum of Understanding (MoU) to deepen research partnerships, promote academic exchange, and foster innovation in advanced manufacturing and materials engineering.
Delta Thailand Reinforces 4IR Leadership and Smart Energy Vision at i-Forum 2025
06/02/2025 | Delta ThailandDelta Thailand reaffirmed its role in advancing industrial automation and sustainable innovation at i-Forum 2025. Held on May 9 by the Faculty of Engineering at Kasetsart University in Bangkok, the forum focused on the theme “Leading the 4IR Revolution: Key Lessons from the WEF Global Lighthouse Network.”
Stephen Winchell Appointed DARPA Director
06/02/2025 | DARPAStephen Winchell was sworn in today as the 24th director of the Defense Advanced Research Projects Agency.