Tests Show Integrated Quantum Chip Operations Possible
October 30, 2018 | UNSW SydneyEstimated reading time: 5 minutes
Artist's impression of a silicon chip for a spin-based quantum computer. On the top are mostly standard CMOS components; while below that, quantum bits are in operation. (Illustration: Tony Melov)
CQC2T’s Unique Approach Using Silicon
Working in silicon is important not just because the element is cheap and abundant, but because it has been at the heart of the global computer industry for almost 60 years. The properties of silicon are well understood and chips containing billions of conventional transistors are routinely manufactured in big production facilities.
Three years ago, Dzurak’s team published in the journal Nature the first demonstration of quantum logic calculations in a real silicon device with the creation of a two-qubit logic gate– the central building block of a quantum computer.
“Those were the first baby steps, the first demonstrations of how to turn this radical quantum computing concept into a practical device using components that underpin all modern computing,” says Professor Mark Hoffman, UNSW’s Dean of Engineering.
“Our team now has a blueprint for scaling that up dramatically.
“We’ve been testing elements of this design in the lab, with very positive results. We just need to keep building on that – which is still a hell of a challenge, but the groundwork is there, and it’s very encouraging.
“It will still take great engineering to bring quantum computing to commercial reality, but clearly the work we see from this extraordinary team at CQC2T puts Australia in the driver’s seat.”
Other authors of the new Nature Communications paper are UNSW researchers Kok Wai Chan, Bas Hensen, Wister Huang, Tuomo Tanttu, Henry Yang, Arne Laucht, Fay Hudson and Andrea Morello, as well as Menno Veldhorst of QuTech and TU Delft, Thaddeus Ladd of HRL Laboratories and Kohei Itoh of Japan's Keio University.
Commercializing CQC2T’s Intellectual Property
In 2017, a consortium of Australian governments, industry and universities established Australia’s first quantum computing company to commercialise CQC2T’s world-leading intellectual property.
Operating out of new laboratories at UNSW, Silicon Quantum Computing Pty Ltd (SQC) has the target of producing a 10-qubit demonstration device in silicon by 2022, as the forerunner to creating a silicon-based quantum computer.
The work of Dzurak and his team will be one component of SQC realising that ambition. UNSW scientists and engineers at CQC2T are developing parallel patented approaches using single atom and quantum dot qubits.
In May 2018, the then Prime Minister Malcolm Turnbull and the President of France, Emmanuel Macron, announced the signing of a Memorandum of Understanding (MoU) addressing a new collaboration between SQC and the world-leading French research and development organisation Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA).
The MoU outlined plans to form a joint venture in silicon-CMOS quantum computing technology to accelerate and focus technology development, as well as to capture commercialisation opportunities – bringing together French and Australian efforts to develop a quantum computer.
The proposed Australian-French joint venture would bring together Dzurak’s team, located at UNSW, with a team led by Dr Maud Vinet from CEA, who are experts in advanced CMOS manufacturing technology, and who have also recently demonstrated a silicon qubit made using their industrial-scale prototyping facility in Grenoble.
It is estimated that industries comprising approximately 40% of Australia’s current economy could be significantly impacted by quantum computing. Possible applications include software design, machine learning, scheduling and logistical planning, financial analysis, stock market modelling, software and hardware verification, climate modelling, rapid drug design and testing, and early disease detection and prevention.
Page 2 of 2Suggested Items
Baker Hughes' Waygate Unveils Nanotom HR for Advanced Inspection
05/06/2025 | Baker HughesWaygate Technologies, a Baker Hughes business and global leader in nondestructive testing (NDT) solutions for industrial inspection, unveiled its new extremely high-resolution computed tomography (CT) system, Phoenix Nanotom® HR (High Resolution) at the Control 2025 show in Stuttgart, Germany.
Hon Hai Research Institute Demonstrates Superiority of Shallow Quantum Circuits Beyond Prior Understanding
05/05/2025 | Hon Hai Technology GroupHon Hai Research Institute (HHRI), in a milestone collaborative effort, has demonstrated that parallel quantum computation can exhibit greater computational power than previously recognized, with its research results accepted for publication in the prestigious journal Nature Communications.
Forge Nano Secures $40M to Scale U.S. Battery Manufacturing and Commercial Semiconductor Equipment Businesses
05/02/2025 | Forge NanoForge Nano, Inc., a technology company pioneering domestic battery and semiconductor innovations, announced the successful close of $40 million in new funding.
MICROOLED Announces Partnership with Vortex Optics and Brand New US Headquarters
05/02/2025 | BUSINESS WIREMICROOLED Inc., the leading global supplier of AMOLED displays, is proud to announce their partnership with Vortex Optics to advance the development of high-performance weapon sights for optical sighting systems.
Indium Wins EM Asia Innovation Award
05/01/2025 | Indium CorporationIndium Corporation, a leading materials provider for the electronics assembly market, recently earned an Electronics Manufacturing (EM) Asia Innovation Award for its new high-reliability Durafuse® HR alloy for solder paste at Productronica China in Shanghai.