Tests Show Integrated Quantum Chip Operations Possible
October 30, 2018 | UNSW SydneyEstimated reading time: 5 minutes
Artist's impression of a silicon chip for a spin-based quantum computer. On the top are mostly standard CMOS components; while below that, quantum bits are in operation. (Illustration: Tony Melov)
CQC2T’s Unique Approach Using Silicon
Working in silicon is important not just because the element is cheap and abundant, but because it has been at the heart of the global computer industry for almost 60 years. The properties of silicon are well understood and chips containing billions of conventional transistors are routinely manufactured in big production facilities.
Three years ago, Dzurak’s team published in the journal Nature the first demonstration of quantum logic calculations in a real silicon device with the creation of a two-qubit logic gate– the central building block of a quantum computer.
“Those were the first baby steps, the first demonstrations of how to turn this radical quantum computing concept into a practical device using components that underpin all modern computing,” says Professor Mark Hoffman, UNSW’s Dean of Engineering.
“Our team now has a blueprint for scaling that up dramatically.
“We’ve been testing elements of this design in the lab, with very positive results. We just need to keep building on that – which is still a hell of a challenge, but the groundwork is there, and it’s very encouraging.
“It will still take great engineering to bring quantum computing to commercial reality, but clearly the work we see from this extraordinary team at CQC2T puts Australia in the driver’s seat.”
Other authors of the new Nature Communications paper are UNSW researchers Kok Wai Chan, Bas Hensen, Wister Huang, Tuomo Tanttu, Henry Yang, Arne Laucht, Fay Hudson and Andrea Morello, as well as Menno Veldhorst of QuTech and TU Delft, Thaddeus Ladd of HRL Laboratories and Kohei Itoh of Japan's Keio University.
Commercializing CQC2T’s Intellectual Property
In 2017, a consortium of Australian governments, industry and universities established Australia’s first quantum computing company to commercialise CQC2T’s world-leading intellectual property.
Operating out of new laboratories at UNSW, Silicon Quantum Computing Pty Ltd (SQC) has the target of producing a 10-qubit demonstration device in silicon by 2022, as the forerunner to creating a silicon-based quantum computer.
The work of Dzurak and his team will be one component of SQC realising that ambition. UNSW scientists and engineers at CQC2T are developing parallel patented approaches using single atom and quantum dot qubits.
In May 2018, the then Prime Minister Malcolm Turnbull and the President of France, Emmanuel Macron, announced the signing of a Memorandum of Understanding (MoU) addressing a new collaboration between SQC and the world-leading French research and development organisation Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA).
The MoU outlined plans to form a joint venture in silicon-CMOS quantum computing technology to accelerate and focus technology development, as well as to capture commercialisation opportunities – bringing together French and Australian efforts to develop a quantum computer.
The proposed Australian-French joint venture would bring together Dzurak’s team, located at UNSW, with a team led by Dr Maud Vinet from CEA, who are experts in advanced CMOS manufacturing technology, and who have also recently demonstrated a silicon qubit made using their industrial-scale prototyping facility in Grenoble.
It is estimated that industries comprising approximately 40% of Australia’s current economy could be significantly impacted by quantum computing. Possible applications include software design, machine learning, scheduling and logistical planning, financial analysis, stock market modelling, software and hardware verification, climate modelling, rapid drug design and testing, and early disease detection and prevention.
Page 2 of 2Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
AI-Powered Wearables Transform How Consumers Interact with Everyday Technology
09/15/2025 | PR NewswireThe global demand for AI-driven, touchless wearable technologies is accelerating as consumers seek more natural, seamless and intuitive ways to interact with their devices. Traditional touch screens and voice assistants, while effective, are increasingly viewed as limiting in a world where multitasking, mobility and efficiency are key. As industries from consumer electronics to augmented reality and enterprise computing embrace the possibilities of gesture-based control, the market for neural interfaces is rapidly expanding
Hanwha Aerospace to Collaborate with BAE Systems on Advanced Anti-jamming GPS for Guided Missiles
09/15/2025 | HanwhaHanwha Aerospace has signed a contract with BAE Systems to integrate next-generation, anti-jamming Global Positioning System (GPS) technology into Hanwha Aerospace’s Deep Strike Capability precision-guided weapon system.
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
Intel Announces Key Leadership Appointments to Accelerate Innovation and Strengthen Execution
09/09/2025 | Intel CorporationIntel Corporation today announced a series of senior leadership appointments that support the company’s strategy to strengthen its core product business, build a trusted foundry, and foster a culture of engineering across the business.
DARPA, State of New Mexico Establish Framework to Advance Quantum Computing
09/08/2025 | DARPAAs part of the Quantum Benchmarking Initiative (QBI), DARPA signed an agreement with the State of New Mexico’s Economic Development Department to create the Quantum Frontier Project.