Laser Technique May Open Door to More Efficient Clean Fuels
October 31, 2018 | University of LiverpoolEstimated reading time: 2 minutes

Research by the University of Liverpool could help scientists unlock the full potential of new clean energy technologies.
Finding sustainable ways to replace fossil fuels is a key priority for researchers across the globe. Carbon dioxide (CO2) is a hugely abundant waste product that can be converted into energy-rich by-products, such as carbon monoxide. However, this process needs to be made far more efficient for it to work on a global, industrial scale.
Electrocatalysts have shown promise as a potential way to achieve this required efficiency ‘step-change’ in CO2 reduction, but the mechanisms by which they operate are often unknown making it hard for researchers to design new ones in a rational manner.
New research published in Nature Catalysis by researchers at the University’s Department of Chemistry, in collaboration with Beijing Computational Science Research Center and STFC Rutherford Appleton Laboratory, demonstrates a laser-based technique that can be used to study the electrochemical reduction of CO2 in-situ and provide much-needed insights into these complex chemical pathways.
The researchers used a technique called Vibrational Sum-Frequency Generation (VSFG) spectroscopy coupled with electrochemical experiments to explore the chemistry of a particular catalyst called Mn(bpy)(CO)3Br, which is one of the most promising and intensely studied CO2 reduction electrocatalysts.
Using VSFG the researchers were able to observe key intermediates that are only present at an electrode surface for a very short time – something that has not been achieved in previous experimental studies.
At Liverpool, the work was carried out by the Cowan Group, a team of researchers who study and develop new catalytic systems for the sustainable production of fuels.
Dr Gaia Neri, who was part of the Liverpool team, said: “A huge challenge in studying electrocatalysts in situ is having to discriminate between the single layer of short-lived intermediate molecules at the electrode surface and the surrounding ‘noise’ from inactive molecules in the solution.
“We’ve shown that VSFG makes it possible to follow the behaviour of even very short lived species in the catalytic cycle. This is exciting as it provides researchers with new opportunities to better understand how electrocatalysts operate, which is an important next step towards commercialising the process of electrochemical CO2 conversation into clean fuel technologies.”
Following on from this research, the team is now working to further improve the sensitivity of the technique and is developing a new detection system that will allow for a better signal-to-noise ratio.
The study was funded by the Engineering and Physical Sciences Research Council (EPSRC).
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Honeywell Advances Technology for the European Defense Sector
04/29/2025 | HoneywellHoneywell has received two research grants to execute projects aimed at advancing avionics and cybersecurity capabilities for the European defense sector.
Real Time with... IPC APEX EXPO 2025: Winner of the IPC Best Student Poster Award
04/29/2025 | Real Time with...IPC APEX EXPOSebastian Carrillo, winner of the Best Student Technical Poster Award, shares insights on his research in nanotechnology and plasmonics. His work on a metal insulator nano array focuses on light-matter interactions at the nanoscale. With advancements in manufacturing, applications include sensing technologies and photovoltaic systems. Sebastian discusses his project involving simulations and optical experiments. His career goals are in research, and he encourages students to seize academic opportunities.
ITRI Named a Top 100 Global Innovator for the Ninth Time
04/28/2025 | PRNewswireThe Industrial Technology Research Institute (ITRI) was officially honored at the 2025 Top 100 Global Innovators Award Ceremony hosted by Clarivate in Taipei.
Hon Hai Research Institute's Fourth-generation Semiconductor Application Reaches a New Milestone
04/21/2025 | FoxconnHon Hai Research Institute ( HHRI ) Semiconductor Research Institute has conducted cross-border cooperation with Yang Ming Chiao Tung University and the University of Texas at Austin to invest in forward-looking research on fourth-generation semiconductors.