Chemistry Professor's Research Shocking the Battery Field
October 31, 2018 | Virginia TechEstimated reading time: 5 minutes
The battery community often prioritizes advances in energy density, but Lin focuses on safety first. In papers published by Nano Letters and Nature Communications this year, the Lin Lab looked at what happens at the atomic level when a battery combusts.
“We are taking chemical and physical approaches that were rarely implemented in the battery research previously,” Lin said. “This was a very specialized study about battery safety in trying to identify the chemical origin of safety problems.”
Lin’s postdoc, Linqin Mu, is the first author for both studies.
"We explained the global behaviors of batteries from the perspective of chemical bonding," Mu said. "Now, we can really use the insight to develop advanced battery materials with superior safety and lifetime."
In their research, Mu and Lin created conditions to mimic a real battery, charged the battery particles, and then observed what happens during overheating. Oxygen gas is released from overheated particles in the cathode, and that gas can induce cell overheating and electrolyte combustion and lead to a complete failure of batteries.
In order to observe these phenomena, Lin teamed up with Yijin Liu and other researchers at SLAC National Accelerator Laboratory in California. This large facility, which Lin estimated to be around the size of the Drillfield, accelerates electrons close of the speed of light and generates light “synchrotron X-rays.” Using the synchrotron X-ray method, Lin’s group and their SLAC collaborators can visualize the changes of the particles in three dimensions at a microscopic resolution.
The research design not only allowed the researchers to fundamentally understand the chemical failures in batteries, but it also allowed them to study the effects of phase change on battery materials. Phase change refers to the solid, liquid, and gas phases and the transitions from one phase to another. Lin said phase change can be detrimental to batteries, and the release of oxygen gas can trigger phase changes, which worsen properties such as energy density and cycle life.
“This study is not about designing a new material,” Lin said. “It’s a study to understand what happens at the chemical and atomic level when overheating in a battery happens. And then in the future, can we design a material better to inhibit this phenomenon?”
The Lin Lab has applied the knowledge learned from this study and developed a range of lithium-ion and sodium-ion battery cathode materials, and the studies have been published in Energy & Environmental Science, Advanced Energy Materials, Journal of Materials Chemistry A, ACS Applied Materials & Interfaces, etc. These studies are driven forward by Lin’s postdoc and graduate students.
“We are excited about our results,” Lin said. “We are still building our foundation, and I am really glad to see our team continue to grow at Virginia Tech.”
Creating a New Electrolyte
Building off the research in battery safety, Lin and his lab are developing new, better-performing batteries.
A battery consists of three basic components: anode, cathode, and electrolyte. The electrolyte serves as the medium that facilitates ion movement in between the anode and cathode. Rechargeable lithium-ion batteries are very common in household and smartphone use, and those batteries see lithium ions flow between the anode and cathode.
When an appliance needs power, electrons flow from the anode into the device. These negatively charged electrons continue flowing into the cathode, and positively charged lithium ions move from the anode to the cathode via the electrolyte in order to maintain a neutral charge overall.
“Lithium cannot move in the air, so you need an electrolyte to be the medium,” Lin said. “Like a fish, it can’t swim through the air. At the least, it can’t move for very long.”
The electrolytes of today are mostly liquid and flammable. To address this potential safety hazard, Lin, who is a faculty member with the Macromolecules Innovation Institute (MII), has teamed up with fellow polymer experts in MII to design polymer-based, nonflammable electrolytes that are neither flammable liquids nor impermeable solids.
Lin’s collaboration with MII director and chemistry professor Timothy Long was recently featured in the Journal of Power Sources. Lin’s graduate student Xiaona Pan was the first author on the study.
“Fish don’t swim in air or concrete, but the question is can we design a gel for the fish to go through?” Lin said. “That’s what we’re trying to do, either with a ceramic material or polymer-based material, so the lithium ion can still conduct.
“The cathode work we’ve been doing shows that flammable liquid plus oxygen gas plus local overheating can lead to an explosion. The gel could get rid of the liquid.”
Between smartphones, tablets, and laptops, not to mention cars and other larger applications, batteries are everywhere. You’re probably reading this story using battery power.
Lin sees the tremendous research opportunities that abound in the battery space. From understanding why our batteries fail to applying that knowledge and developing better batteries, Lin and his group have started to shine in this emerging field.
“I am excited to work with a group of talented postdocs, graduate students, and undergraduate students,” Lin said. “We are excited to be surrounded by so many polymer experts on campus, and with the collaborations with professors Timothy Long, Robert Moore, Louis Madsen, and Michael Schulz, we hope to see more collaborative studies surface in the future.”
Page 2 of 2Suggested Items
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (formerly DuPont Electronics), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Gorilla Circuits Elevates PCB Precision with Schmoll’s Optiflex II Alignment System
06/23/2025 | Schmoll MaschinenGorilla Circuits, a leading PCB manufacturer based in Silicon Valley, has enhanced its production capabilities with the addition of Schmoll Maschinen’s Optiflex II Post-Etch Punch system—bringing a new level of precision to multilayer board fabrication.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
American Made Advocacy: Supporting the Entire PCB Ecosystem—Materials to OEMs
06/17/2025 | Shane Whiteside -- Column: American Made AdvocacyWith the addition of RTX to PCBAA’s membership roster, we now represent the interests of companies in the entire PCB ecosystem. From material providers to OEMs, the insights of our collective members help us educate, advocate, and support legislation and policy favorable to America’s microelectronics manufacturers. The industry veterans who lead these companies provide valuable perspective, and their accumulated wisdom makes us an even stronger association.