Harnessing the Power of Sustainable Energy
November 1, 2018 | MITEstimated reading time: 5 minutes

Energy production can be expensive, or inefficient, or toxic to the environment — or some unfortunate combination of the three. But Jesse Hinricher thinks it doesn’t have to be.
Image Caption: Jesse Hinricher, an MIT senior majoring in chemical engineering, has been conducting research focused on specialized batteries that could be plugged into the grid to provide renewable energy on demand. Credit: Jake Belcher
Hinricher, an MIT senior majoring in chemical engineering, has been conducting research focused on specialized batteries that could be plugged into the grid to provide renewable energy on demand. Specifically, he works on swapping out some of the pricier electrolytes in so-called redox flow batteries for more abundant ones, which could help make clean energy more affordable.
He cites his rural childhood as the initial source of his passion for environmental conservation. Hinricher grew up on a Minnesota farm, planting and harvesting soybeans, gardening, and tending cattle on his mother’s farm. His mom, who singlehandedly tends the 700-acre family farm, instilled in him the importance of hard work and independence, which remain some of his core values.
“She taught me to value education, and knowledge, and her work ethic has been a source of inspiration to me,” he says.
On a farm, he says, everything is mechanical; he enjoyed working with his hands. That affinity, blended with his drive to develop solutions for climate change, led Hinricher to study chemical engineering. He had seen firsthand how dramatically the seasons changed over years. For him, climate change wasn’t a distant concept; it was an increasingly alarming reality, and one that he felt he couldn’t ignore.
“I enjoy the environment, and I think it needs to be protected,” he says. “And if not me, then who?”
Battery Power
Since January 2017, Hinricher has worked in the lab of Fikile Brushett, the Cecil and Ida Green Career Development Associate Professor in the Department of Chemical Engineering, on developing redox flow batteries. In some ways, these are similar to batteries you might put in your TV remote: Electrolytes ferry electrons between a cathode and an anode, producing energy. However, the energy density of redox flow batteries is too small to be used for something like a remote, or even a cell phone. They’d likely be incorporated into large-scale energy grids, and would theoretically be more energy efficient and less geographically dependent than other renewable energy storage devices.
For example, in the middle of the day, solar panels are producing lots of energy, but after the sun sets, they are not. Redox flow batteries can store renewable energy for people to use all day rather than relying on coal or natural gas plants. The pitfall of these batteries currently is that they require rare and expensive materials. That’s where Hinricher’s work comes in; his research focuses on identifying less expensive electrolytes and troubleshooting any flaws in their implementation.
“If we can discover less expensive materials, it makes redox flow batteries more commercially attractive, which would be the coolest thing to ever have contributed to,” he says.
Page 1 of 2
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Intel Announces Key Leadership Appointments to Accelerate Innovation and Strengthen Execution
09/09/2025 | Intel CorporationIntel Corporation today announced a series of senior leadership appointments that support the company’s strategy to strengthen its core product business, build a trusted foundry, and foster a culture of engineering across the business.
Cadence to Acquire Hexagon’s Design & Engineering Business
09/08/2025 | Cadence Design SystemsCadence announced it has entered into a definitive agreement to acquire the Design & Engineering (D&E) business of Hexagon AB, which includes its MSC Software business—a pioneer in engineering simulation and analysis solutions.
Marcy’s Musings: Continuing to Invent the Future With SEL
08/19/2025 | Marcy LaRont -- Column: Marcy's MusingsTwo years ago, PCB007 Magazine devoted an issue to Schweitzer Engineering Labs (SEL), a new captive greenfield PCB facility in Moscow, Idaho. We highlighted some of the most cutting-edge achievements in facility layout, design, and equipment in the PCB fabrication industry. SEL was a shining example of what was possible, providing insight and inspiration to PCB fabricators looking toward growth and expansion.
Advint and SanRex Expand High-Performance DC Rectifier Access for North American PCB Fabricators
08/12/2025 | Advint IncorporatedAdvint Incorporated has entered a strategic partnership with SanRex Corporation, enhancing access to industrial-grade DC rectifiers for the US printed circuit board industry. With a legacy of power innovation and performance across the globe, SanRex rectifiers are available through Advint’s proficient distribution network.
Review: PCEA Orange County Summer Meeting
08/06/2025 | Dan Feinberg, Technology Editor, I-Connect007The Printed Circuit Engineering Association (PCEA) represents a community of engineers, designers, and industry influencers dedicated to the advancement of PCB technology, design, and manufacturing, and the growth and knowledge of its membership. PCEA regularly hosts events to share the latest developments, best practices, and visions for the future of electronic design and manufacturing. The Orange County chapter seems to be one of the largest and most active ones and I was invited to attend the latest chapter event on July 24 in Costa Mesa, California.