High-Performance Solar Cells: Physicists From Halle Grow Stable Perovskite Layers
November 6, 2018 | Martin Luther University Halle-WittenbergEstimated reading time: 2 minutes
Perovskites are currently receiving a great deal of attention in the solar industry. In 2009, researchers were first able to prove that organic-inorganic compounds with a special perovskite crystal structure are good absorbers that can effectively convert sunlight into electricity. Within just a few years, the efficiency of perovskite solar cells was increased to well over 20% in the laboratory. "Although modern, monocrystalline silicon solar cells achieve slightly better values, they are much harder to manufacture and they have been under development for a much longer time," says Dr Paul Pistor, a physicist at MLU and lead author of the study. Currently, however, there are no market-ready perovskite-based solar cells as there is no established process for the large-scale production of perovskites. In addition, the thin crystal layers are rather unstable and sensitive to environmental influences. "High temperatures or humidity cause the perovskites to decompose and lose their ability to convert sunlight into electricity," says Pistor. Yet, solar cells have to withstand elevated temperatures because they are permanently exposed to the sun.
In their study, the physicists from Halle investigated a special, inorganic perovskite consisting of caesium, lead and bromine or iodine. Instead of using the usual wet-chemical processes to produce the perovskites, they deployed a process that is already widely used in industry to produce thin layers and a range of components. In a vacuum chamber, precursor materials are heated up until they evaporate. Then, the perovskite condenses on a colder glass substrate and a thin crystalline layer grows. "The advantage of this method is that every part of the process can be very well controlled. This way, the layers grow very homogenous and the thickness and composition of the crystals can be easily adjusted," explains Pistor. His team was thus able to produce perovskite layers based on caesium that didn’t decompose until they reached temperatures of 360 degrees Celsius. Using cutting-edge X-ray analysis, the researchers also analysed the growth and decay processes of the crystals in real time.
The results provide important insights into the underlying properties of perovskites and point to a process that may be suitable for the industrial realisation of modern perovskite-based solar cell technology.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
Integrating Uniplate PLBCu6 With the Digital Factory Suite
09/12/2025 | Giovanni Obino and Andreas Schatz, MKS' AtotechPrinted circuit board manufacturing is rapidly changing, driven by miniaturization, stringent reliability requirements, and growing pressure for sustainable production. Meeting these challenges requires more than incremental improvements; it demands a combination of precise equipment and real-time process intelligence. The pairing of Uniplate® PLBCu6 with the Digital Factory Suite (DFS) demonstrates how hardware and software can work together to create more responsive, resource-efficient manufacturing.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
The Chemical Connection: Experience and Wisdom Gained by Doing Business
09/03/2025 | Don Ball -- Column: The Chemical ConnectionA well-managed company learns to adjust its strategies and processes based on what it learns during challenging times. The experience gained from making (or losing) a difficult sale is invaluable in adapting new sales and manufacturing processes necessary to make that sale the next time, no matter how painful those new processes might be.
MacDermid Alpha Awarded for Innovation: Driving Process Optimization and Efficiency with Major Indian EMS Provider
08/28/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha Electronics Solutions, a leading global supplier of integrated materials for the electronics industry, is recognized by one of India’s top EMS providers, Syrma SGS, with an award for innovation that advanced process optimization, enhanced operational efficiency, and yield gains.