Physicists Design Next-Gen Antenna for Supersensitive Magnetic Field Detectors
November 6, 2018 | ITMO UniversityEstimated reading time: 2 minutes

Scientists from ITMO University and the Lebedev Physical Institute of the Russian Academy of Sciences have proposed a new microwave antenna that creates a uniform magnetic field in large volume. It is capable of uniform and coherent addressing of the electronic spins of an ensemble of nanodiamond structure defects. This can be used to create super-sensitive magnetic field detectors of a new generation for magnetoencephalography in the study and diagnosis of epilepsy and other diseases. The results are published in JETP Letters.
Studying the characteristics of magnetic fields is necessary for many industries: from navigation to medicine. For example, magnetoencephalography can register magnetic fields that emerge as part of the brain’s function, as well as measure the activity of individual neurons. This method is used in the diagnosis of epilepsy and Alzheimer's disease, or in preparation for brain surgery. However, magnetoencephalography requires super-sensitive magnetometers: devices that record the properties of magnetic fields, even weak ones.
Therefore, scientists are constantly looking for new ways to create super-sensitive magnetometers of the new generation. Such devices should operate at room temperature and low input power. Moreover, they should be compact and relatively cheap. One of the promising options in this field is nanodiamonds with defects. Nanodiamonds are carbon nanostructures with a high refractive index and high thermal conductivity which almost do not interact with other substances. They may contain complex defects of the internal structure, such as Nitrogen-vacancy (NV) centers.
“Such defects may be created artificially: when a carbon atom is removed from the diamond's crystal lattice, the resulting vacancy is bonded to the implanted nitrogen atom. The structure of this defect is unique since the electronic spins of the individual center are manipulated by electromagnetic fields. Depending on the properties of the surrounding microwave magnetic field, the state of the electron spin of the NV-center is changing, and this can be recorded with optical methods,” explains Dmitry Zuev, researcher at the Faculty of Physics and Engineering at ITMO University.
However, as the response of a single NV-center is not strong enough, an ensemble of such defects is necessary in order to improve the sensitivity of sensors. This is where a problem arises, since the reaction of the electron spins of all the centers in the nanodiamond must be coherently addressed and manipulated. In other words, they must all be in a microwave magnetic field of the same intensity to ensure that their response is the same.
Scientists from ITMO University and Lebedev Physical Institute of the Russian Academy of Sciences suggested using a dielectric microwave antenna to coherently control the electron spins of NV-centers in the whole nanodiamond volume. The antenna is represented by a dielectric cylinder with an internal hole containing a nanodiamond with many NV-centers. This system is excited by an electric current. Once an input power of about 5 watts is applied, the dielectric cylinder creates a strong uniform magnetic field around the nanodiamond. As a result, the electron spins of all the NV-centers are synchronized in the same way and thus provide a high magnetometers sensitivity.
Measuring the Rabi frequency is the first step toward determining the sensitivity of the new magnetometer. Scientists plan to continue experiments and theoretical studies, searching for new antenna configurations that will provide even higher quality magnetometers.
Suggested Items
The Knowledge Base: Unlocking the Invisible—The Critical Role of X-ray Technology
04/29/2025 | Mike Konrad -- Column: The Knowledge BaseFrom detecting voids under BGAs to solder defects in high-reliability applications, X-ray inspection has become an indispensable tool in modern manufacturing. But how is the technology evolving? What challenges do experts face in deploying X-ray inspection effectively and what does the future hold for this critical quality assurance method?
The Future of Advanced Packaging Inspection Is X-ray
04/22/2025 | David Kruidhof and Kevin Jan, Comet YxlonDriven by smartphones, high-performance computers, and artificial intelligence, the global demand for high-end computing power is constantly rising. The industry is also facing demands for miniaturization, which creates the need for ever-smaller defect recognition. The semiconductor industry has been identifying and solving these challenges for decades using various optical inspection and SEM tools.
PCBAIR Invests in AI to Enhance Defect Prediction in PCB Manufacturing
04/11/2025 | PRNewswirePCBAIR, a leading provider of PCB manufacturing and assembly services with fully automated production lines, announced that it is increasing funding for research and development to incorporate AI into its manufacturing processes, dramatically improving defect prediction accuracy and efficiency.
TASMIT Launches Large Glass Substrate Inspection System for Advanced Semiconductor Packaging
03/04/2025 | ACCESSWIRETASMIT Inc. has launched a new inspection system for glass substrates as part of its INSPECTRA® series of semiconductor wafer visual inspection systems, which has gained attention for its high efficiency in advanced semiconductor manufacturing.
Delvitech to Officially Present Hybrid AOI + SPI Horus System at IPC APEX EXPO 2025
02/06/2025 | DelvitechDelvitech is happy to announce that it will showcase its groundbreaking Horus system, the industry's first all-in-one AI native platform for both Automatic Optical Inspection (AOI) and Solder Paste Inspection (SPI), at the upcoming IPC APEX EXPO 2025. The event is scheduled from March 18 to 20, 2025, at the Anaheim Convention Center in Anaheim, California.