Substrates for Advanced PCB Technologies: What Will the Future Hold?
November 6, 2018 | Pete Starkey, I-Connect007Estimated reading time: 9 minutes
Developments in ultra-thin flexible integrated circuits were opening up opportunities for introducing intelligence and interactivity into everyday items, enabling smart packaging, labels, and objects. The proprietary PragmatIC technology utilised thin-film metal oxides on a polymer substrate with a total thickness of fewer than 10 microns at a fraction of the cost of equivalent silicon devices, and the capital cost of the manufacturing plant was far less than that for silicon semiconductors. Fujikora’s WABE hybrid die technology could mass-produce multilayer polyimide PCBs embedded with background ICs and low-profile passive components through a roll-to-roll process. The thin flexible body of the WABE package favoured applications in medical and wearable electronics.
Tremlett concluded his presentation with a brief overview of “substrateless” circuits and moulded interconnect devices with automotive application examples where the circuit was created directly on an existing substrate, and in wearable applications where the circuit was deposited directly on to a piece of fabric.
Martin Wickham then introduced Jim Francey, sales manager Northern Europe for Optiprint and well-known for his expert knowledge on low-loss materials for microwave and RF applications, to discuss organic substrates for PCBs and the factors influencing substrate development and user selection criteria.
Francey began with a broad overview of the available classes of organic substrate: paper, polyester films, FR-4 epoxy, high-Tg epoxy, polyimide, and PTFE. Although paper-phenolic laminates had been used since the early 1960s, there was growing interest in the use of paper coated with biodegradable polyimide as a low-cost PCB substrate. Polyesters such as polyethylene terephthalate (PET) and polyethylene naphthenate (PEN) were well-established flexible-circuit substrates, especially in high-volume reel-to-reel applications, and were being used as substrates for emerging near-field communication (NFC) smart labels with printed memory and printed sensors.
FR-4 woven-glass-reinforced thermoset epoxy resin laminates and prepregs were the established substrates of choice for multilayer PCBs, and blends with resins such as bismaleimide triazine, cyanate ester, and polypropylene ethers had given improved electrical and mechanical properties. Lead-free assembly requirements had driven a transition from di-functional to multifunctional epoxy for improved temperature capability. The addition of thermally conductive inorganic fillers conferred thermal dissipation properties.
Woven-glass-reinforced thermoset polyimide laminates and prepregs had become the industry standard for applications where operating temperatures exceeded the capability of multifunctional epoxy. For many military and aerospace applications, non-reinforced polyimide film was used as the basis of flexible and rigid-flex circuits. Further, adhesiveless materials were increasingly used where reduced thickness, increased thermal robustness, and improved high-frequency electrical properties were required.
Woven-glass-reinforced and non-reinforced PTFE substrates were used predominantly in RF and microwave designs and increasingly in millimetre-wave applications. These materials combined a low dissipation factor with a stable dielectric constant through a wide frequency range. Volume markets were cellular base-station power amplifiers, base-station antennae, and increasingly in automotive radar antennae. Inorganic fillers could be used to modify dielectric constant and thermal conductivity. Woven-glass-reinforced laminates based on thermoset hydrocarbon resins with inorganic fillers were being widely used in microwave and high-speed digital applications, and new hydrocarbons were seen as cost-effective replacements for PTFE in the automotive safety electronics market. Non-reinforced liquid crystal polymer (LCP)—a thermoplastic with negligible water absorption—was increasing in popularity as a substrate in microwave and millimetre-wave applications. Cyclic olefin copolymer was a crystal-clear plastic frequently used in medical applications and in conjunction with additive technology.
Moving on from this comprehensive survey of established and emerging substrate materials, Francey discussed the topic of satisfying PCB transmission requirements in some depth, beginning with some comments on miniaturisation. Thin-core dielectrics gave the opportunity to reduce plated via diameter and increase packaging density. Adhesiveless polyimide flex substrates available in thicknesses down to 12.5 microns, and an ultra-light-weight glass fabric style—1017, only 15 microns—enabled the manufacture of 30-micron laminates and prepregs. Francey showed an example of a 6-layer sequentially laminated rigid-flex with 12-micron single-sided polyimide cores and 12-micron bond plies, and 50-micron stacked vias laser-drilled and copper-filled. Thin-core rigid organic substrates with low-expansion woven glass and copper-filled vias were increasingly being used as alternatives to ceramic substrates in semiconductor packaging.
Francey considered basic requirements for maintaining high-speed signal integrity: low-loss polymers with stable dielectric constant through a range of frequencies, low-profile copper foil, and spread-glass fabrics to minimise the effect of glass-weave skew. He also demonstrated the importance of good layer-to-layer registration in minimising signal losses.
Page 2 of 3
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.