New Research Center to Explore Spintronics Materials for Advanced Computing
November 7, 2018 | NISTEstimated reading time: 1 minute

The U.S. Department of Commerce’s National Institute of Standards and Technology (NIST) and its partners in the Nanoelectronic Computing Research (nCORE) consortium have awarded funding for a new research center to focus on novel materials for advanced computing systems.
The Center for Spintronic Materials in Advanced Information Technologies (SMART) will be led by and housed at the University of Minnesota Twin Cities and will include researchers from the Massachusetts Institute of Technology, Pennsylvania State University, Georgetown University and the University of Maryland. Through nCORE, NIST will provide $7.5 million over four years, funding that will be matched with a $2.8 million contribution from the SMART partners.
Spintronics focuses on the magnetic “spin” properties of electrons, as opposed to their charges, which is the focus of electronics. Spintronics offers advantages over electronics such as higher speeds, lower energy needs and increased stability under certain conditions. Advances in the materials needed for spintronics devices could enable new computational systems, including neuromorphic systems inspired by the human brain that promise to dramatically improve the efficiency of important tasks.
The new center is bringing together top experts in the fields of spintronic materials and device research. According to the SMART team proposal, the center will be “driven by the need for innovative memory and processing architectures that promise to significantly improve the energy efficiency, throughput, and overall functionality of tomorrow’s computing paradigms; in particular, neuromorphic computing, probabilistic computing, in-memory computing, and wave-based information processing.”
NIST launched the nCORE consortium in 2017 with SRCco, a not-for-profit subsidiary of the Semiconductor Research Corporation. The $2.5 million-per-year public-private partnership supports basic research focused on the long-term needs of industry in the areas of future computing and information processing. The precompetitive research supported by nCORE explores fundamental materials, devices and interconnect solutions to enable future high-performance computing beyond conventional transistor technologies and classical information processing and storage.
The first nCORE center, NEW LIMITS, was launched in 2018, to develop and study new materials that will be applied in unique logic, memory and interconnect applications to enable novel computing and storage paradigms.
NIST promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards and technology in ways that enhance economic security and improve our quality of life. NIST is a non-regulatory agency of the U.S. Department of Commerce. To learn more about NIST, click here.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.