New Quantum Criticality Discovered in Superconductivity
November 8, 2018 | Ames LaboratoryEstimated reading time: 1 minute
Using solid state nuclear magnetic resonance (ssNMR) techniques, scientists at the U.S. Department of Energy’s Ames Laboratory discovered a new quantum criticality in a superconducting material, leading to a greater understanding of the link between magnetism and unconventional superconductivity.
Most iron-arsenide superconductors display both magnetic and structural (or nematic) transitions, making it difficult to understand the role they play in superconducting states. But a compound of calcium, potassium, iron, and arsenic, and doped with small amounts of nickel, CaK(Fe1-xNix)4As4, first made at Ames Laboratory, has been discovered to exhibit a new magnetic state called a hedgehog spin-vortex crystal antiferromagnetic state without nematic transitions.
“Spin or nematic fluctuations can be considered to play an important role for unconventional superconductivity,” said Yuji Furukawa, a senior scientist at Ames Laboratory and a professor of Physics and Astronomy at Iowa State University. “With this particular material, we were able to examine only the magnetic fluctuations, and NMR is one of the most sensitive techniques for examining them.” He continued, “using 75As NMR, we discovered that CaKFe4As4 is located at a hedgehog spin-vortex crystal antiferromagnetic quantum critical point which is avoided due to superconductivity. The discovery of the magnetic quantum criticality without nematicity in CaK(Fe1−xNix)4As4 suggests that the spin fluctuations are the primary driver of superconductivity.”
Furukawa’s discovery was a collaboration between Ames Laboratory’s world-leading SSNMR team and the lab’s condensed matter physicists, including Paul Canfield, a senior scientist at Ames Laboratory and a Distinguished Professor and the Robert Allen Wright Professor of Physics and Astronomy at Iowa State University.
“This is a new type of magnetic order,” said Canfield. “You have this interesting interaction between superconductivity and magnetism from high temperatures in the normal state. This gives us some sense that this high temperature superconductivity may be coming from this near quantum critical antiferromagnetic transition.”
About Ames Laboratory
Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.
About DOE’s Office of Science
DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Real Time with... SMTAI 2025: Exploring Career Opportunities in Electronics Manufacturing with The Training Connection
10/29/2025 | Real Time with...SMTAIMarcy LaRont introduces William Graver, a senior technologist with a rich background in electronics. William discusses the critical role of training in the industry, noting the high demand for skilled workers. He clarifies the difference between certification and practical training, emphasizing the need for hands-on experience. William encourages young people to explore careers in electronics manufacturing.
Interposers, Substrates, and Advanced Manufacturing
10/13/2025 | Marcy LaRont, I-Connect007I attend a lot of industry trade shows and conferences. Lately, during conversations with technologists, I’ve noticed that there is some confusion about what exactly constitutes an interposer. One question I hear every so often is, “Are all interposers substrates?” The short answer to that question is no. But some interposers are, in fact, full substrates.
Beyond Design: Slaying Signal Integrity Villains
09/17/2025 | Barry Olney -- Column: Beyond DesignHigh-speed PCB design is a balancing act, where subtle oversights can develop into major signal integrity nightmares. Some culprits lie dormant during early validation, only to reveal themselves later through workflow disruptions and elusive performance bottlenecks. Take crosstalk, for example. What begins as a stray signal coupling between traces can ripple through the design, ultimately destabilizing the power distribution network. Each of these troublemakers operates with signature tactics, but they also have well-known vulnerabilities.
SINEXCEL, Phoenix Contact Sign Global Strategic Partnership Agreement
05/23/2025 | PRNewswireSINEXCEL has officially signed a global strategic partnership agreement with Phoenix Contact at the PHIIDF (Phoenix Contact Innovation and Industry Development Forum) in Shenzhen.
Beyond Design: Radiation and Interference Coupling
05/21/2025 | Barry Olney -- Column: Beyond DesignRadiation and interference coupling pose significant challenges to the performance and reliability of high-speed digital designs. Whether it's the unintended emission of electromagnetic waves or the interaction of signals between adjacent circuits, these phenomena can lead to unwanted noise, signal distortion, and even system malfunctions. Understanding the mechanisms behind radiation and interference coupling is crucial for electronics designers seeking to design robust and efficient systems.