Scientists Create Fabric Alternative to Batteries for Wearable Devices
November 9, 2018 | UMass AmherstEstimated reading time: 2 minutes

A major factor holding back development of wearable biosensors for health monitoring is the lack of a lightweight, long-lasting power supply. Now scientists at the University of Massachusetts Amherst led by materials chemist Trisha L. Andrew report that they have developed a method for making a charge-storing system that is easily integrated into clothing for “embroidering a charge-storing pattern onto any garment.”
As Andrew explains, “Batteries or other kinds of charge storage are still the limiting components for most portable, wearable, ingestible or flexible technologies. The devices tend to be some combination of too large, too heavy and not flexible.”
Their new method uses a micro-supercapacitor and combines vapor-coated conductive threads with a polymer film, plus a special sewing technique to create a flexible mesh of aligned electrodes on a textile backing. The resulting solid-state device has a high ability to store charge for its size, and other characteristics that allow it to power wearable biosensors.
Andrew adds that while researchers have remarkably miniaturized many different electronic circuit components, until now the same could not be said for charge-storing devices. “With this paper, we show that we can literally embroider a charge-storing pattern onto any garment using the vapor-coated threads that our lab makes. This opens the door for simply sewing circuits on self-powered smart garments.” Details appear online in ACS Applied Materials & Interfaces.
Andrew and postdoctoral researcher and first author Lushuai Zhang, plus chemical engineering graduate student Wesley Viola, point out that supercapacitors are ideal candidates for wearable charge storage circuits because they have inherently higher power densities compared to batteries.
But “incorporating electrochemically active materials with high electrical conductivities and rapid ion transport into textiles is challenging,” they add. Andrew and colleagues show that their vapor coating process creates porous conducting polymer films on densely-twisted yarns, which can be easily swelled with electrolyte ions and maintain high charge storage capacity per unit length as compared to prior work with dyed or extruded fibers.
Andrew, who directs the Wearable Electronics Lab at UMass Amherst, notes that textile scientists have tended not to use vapor deposition because of technical difficulties and high costs, but more recently, research has shown that the technology can be scaled up and remain cost-effective.
She and her team are currently working with others at the UMass Amherst Institute for Applied Life Sciences’ Personalized Health Monitoring Center on incorporating the new embroidered charge-storage arrays with e-textile sensors and low-power microprocessors to build smart garments that can monitor a person’s gait and joint movements throughout a normal day.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.