A Rooftop Device That Can Make Solar Power and Cool Buildings
November 9, 2018 | Stanford UniversityEstimated reading time: 2 minutes

Stanford electrical engineer Shanhui Fan wants to revolutionize energy-producing rooftop arrays.
Today, such arrays do one thing – they turn sunlight into electricity. But Fan’s lab has built a device that could have a dual purpose – generating electricity and cooling buildings.
Image Caption: Professor Shanhui Fan and postdoctoral scholar Wei Li atop the Packard Electrical Engineering building with the apparatus that is proving the efficacy of a double-layered solar panel. The top layer uses the standard semiconductor materials that go into energy-harvesting solar cells; the novel materials on the bottom layer perform the cooling task. (Image credit: L.A. Cicero)
“We’ve built the first device that one day could make energy and save energy, in the same place and at the same time, by controlling two very different properties of light,” said Fan, senior author of an article appearing Nov. 8 in Joule.
The sun-facing layer of the device is nothing new. It’s made of the same semiconductor materials that have long adorned rooftops to convert visible light into electricity. The novelty lies in the device’s bottom layer, which is based on materials that can beam heat away from the roof and into space through a process known as radiative cooling.
In radiative cooling, objects – including our own bodies – shed heat by radiating infrared light. That’s the invisible light night-vision goggles detect. Normally this form of cooling doesn’t work well for something like a building because Earth’s atmosphere acts like a thick blanket and traps the majority of the heat near the building rather allowing it to escape, ultimately into the vast coldness of space.
Holes in the Blanket
Fan’s cooling technology takes advantage of the fact that this thick atmospheric blanket essentially has holes in it that allow a particular wavelength of infrared light to pass directly into space. In previous work, Fan had developed materials that can convert heat radiating off a building into the particular infrared wavelength that can pass directly through the atmosphere. These materials release heat into space and could save energy that would have been needed to air-condition a building’s interior. That same material is what Fan placed under the standard solar layer in his new device.
Zhen Chen, who led the experiments as a postdoctoral scholar in Fan’s lab, said the researchers built a prototype about the diameter of a pie plate and mounted their device on the rooftop of a Stanford building. Then they compared the temperature of the ambient air on the rooftop with the temperatures of the top and bottom layers of the device. The top layer device was hotter than the rooftop air, which made sense because it was absorbing sunlight. But, as the researchers hoped, the bottom layer of the device was significant cooler than the air on the rooftop.
“This shows that heat radiated up from the bottom, through the top layer and into space,” said Chen, who is now a professor at the Southeast University of China.
What they weren’t able to test is whether the device also produced electricity. The upper layer in this experiment lacked the metal foil, normally found in solar cells, that would have blocked the infrared light from escaping. The team is now designing solar cells that work without metal liners to couple with the radiative cooling layer.
“We think we can build a practical device that does both things,” Fan said.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.
Dymax Renews Connecticut Headquarters Lease, Reinforces Long-Term Commitment to Local Community
08/08/2025 | DymaxDymax, a global manufacturer of rapid light-curing materials and equipment, is pleased to announce the renewal and extension of its corporate lease at its 318 Industrial Lane, Torrington, headquarters.