‘Smart Skin’ Simplifies Spotting Strain in Structures
November 16, 2018 | Rice UniversityEstimated reading time: 5 minutes

Thanks to one peculiar characteristic of carbon nanotubes, engineers will soon be able to measure the accumulated strain in an airplane, a bridge or a pipeline—or just about anything—over the entire surface or down to microscopic levels.
They’ll do so by shining a light onto structures coated with a two-layer nanotube film and protective polymer. Strain in the surface will show up as changes in the wavelengths of near-infrared light emitted from the film and captured by a miniaturized hand-held reader. The results will show engineers and maintenance crews whether structures like bridges or aircraft have been deformed by stress-inducing events or regular wear and tear.
Image: Experimental (left) and simulated (right) strain maps around a hole through an aluminum bar show that nanotube-infused "smart skin" developed at Rice University can effectively assess strain in materials. The technique can be used for aircraft, spacecraft and critical infrastructures in which mechanical strain needs to be monitored. (Credit: Satish Nagarajaiah Group/Weisman Research Group/Rice University)
Like a white shirt under an ultraviolet light, single-wall carbon nanotubes fluoresce, a property discovered in 2002 in the lab of Rice chemist Bruce Weisman. In a basic research project a few years later, the group showed that stretching a nanotube changes the color of its fluorescence.
When Weisman’s results came to the attention of Rice civil and environmental engineer Satish Nagarajaiah—who had been working independently on similar ideas using Raman spectroscopy, but at the macro scale, since 2003—he suggested collaborating to turn that scientific phenomenon into a useful technology for strain sensing.
Now, Nagarajaiah and Weisman and have published a pair of important papers about their “smart skin” project. The first appears in Structural Control & Health Monitoring, and introduces the latest iteration of the technology they first revealed in 2012.
It describes a method of depositing the microscopic nanotube-sensing film separately from a protective top layer. Color changes in the nanotube emission indicate the amount of strain in the underlying structure. The researchers say it enables two-dimensional mapping of accumulated strain that can’t be achieved by any other non-contact method.
The second paper, in the Journal of Structural Engineering, details the results of testing smart skin on metal specimens with irregularities where stress and strain are often concentrated.
“The project started out as pure science about nanotube spectroscopy, and led to the proof-of-principle collaborative work that showed we could measure the strain of the underlying substrate by checking the spectrum of the film in one place,” Weisman said. “That suggested the method could be expanded to measure whole surfaces. What we’ve shown now is a lot closer to that practical application.”
Since the initial report, the researchers have refined the composition and preparation of the film and its airbrush-style application, and also developed scanner devices that automatically capture data from multiple programmed points. Unlike conventional sensors that only measure strain at one point along one axis, the smart film can be selectively probed to reveal strain in any direction and location.
Page 1 of 2
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
PC Graphics Add-in Board Shipments Up 27% QoQ in 2Q25
09/03/2025 | Jon Peddie ResearchAccording to a new research report from the analyst firm Jon Peddie Research, the growth of the global PC-based graphics add-in board market reached 11.6 million units in Q2'25 and desktop PC CPUs shipments increased to 21.7 million units.
PC GPU Shipments Up 8.4% in 2Q25 on Pre-Tariff Demand
09/02/2025 | Jon Peddie ResearchJon Peddie Research reports the growth of the global PC-based graphics processor unit (GPU) market reached 74.7 million units in Q2'25, and PC CPU shipments increased to 66.9 million units.
20 Years of Center Nanoelectronic Technologies (CNT) – Backbone of German Semiconductor Research Celebrates Anniversary
08/14/2025 | Fraunhofer IPMSThe Center Nanoelectronic Technologies (CNT) of the Fraunhofer Institute for Photonic Microsystems (IPMS) is celebrating its 20th anniversary this year. Since its founding in 2005, it has developed into a pillar of applied semiconductor research in Germany and Europe. With its unique research cleanroom and equipment adhering to the 300-mm wafer industry standard, CNT is unparalleled in Germany and serves as a central innovation driver for the microelectronics industry.
Q2 Client CPU Shipments Increased 8% from Last Quarter, Up 13% YoY
08/13/2025 | Jon Peddie ResearchJon Peddie Research reports that the global client CPU market expanded for two quarters in a row, and in Q2’25, it showed unseasonal growth of 7.9% from last quarter, while server CPU shipments increased 22% year over year.
FuriosaAI Closes $125M Investment Round to Scale Production of Next-Gen AI Inference Chip
07/31/2025 | BUSINESS WIREFuriosaAI, a semiconductor company building a new foundation for AI compute, today announced it has completed a $125 million Series C bridge funding round. The investment continues a period of significant momentum for Furiosa as global demand for high-performance, efficient AI infrastructure soars.