Scientists Create Atomic Scale, 2D Electronic Kagome Lattice
November 19, 2018 | University of WollongongEstimated reading time: 3 minutes
Scientists from the University of Wollongong (UOW), working with colleagues at China’s Beihang University, Nankai University, and Institute of Physics at Chinese Academy of Sciences, have successfully created an atomic scale, two-dimensional electronic kagome lattice with potential applications in electronics and quantum computing.
A kagome lattice is named after a traditional Japanese woven bamboo pattern composed of interlaced triangles and hexagons.
The research team created the kagome lattice by layering and twisting two nanosheets of silicene. Silicene is a silicon-based, one-atom thick, Dirac fermion material with a hexagonal honeycomb structure, which electrons can speed across at close to the speed of light.
When silicene is twisted into a kagome lattice, however, electrons become “trapped”, circling around in the hexagons of the lattice.
Dr Yi Du, who leads the Scanning Tunneling Microscopy (STM) group at UOW’s Institute for Superconducting and Electronic Materials (ISEM) and Beihang-UOW Joint Research Centre, is the paper’s corresponding author.
He said scientists have long been interested in making a 2D kagome lattice because of the useful theoretical electronic properties such a structure would have.
“Theorists predicted a long time ago that if you put electrons into an electronic kagome lattice, destructive interferences would mean the electrons, instead of flowing through would instead turn around in a vortex and would become locked in the lattice. It is equivalent to someone losing their way in a maze and never getting out,” Dr Du said.
“The interesting point is that the electrons will be free only when the lattice is broken, when you create an edge. When an edge forms, electrons will move along with it without any electric resistance - it has very low resistance, so very low energy and electrons can move very fast, at the speed of light. This is of great importance for designing and developing low-energy-cost devices.
“Meanwhile, with a strong so-called spin-orbital coupling effect, novel quantum phenomena, such as frictional quantum Hall effect, are expected to happen at room temperature. This will pave a way for quantum devices in the future.”
While the theoretical properties of an electronic kagome lattice made it of great interest to scientists, creating such a material has proved extremely challenging.
“For it to work as predicted, you have to make sure the lattice is constant, and that lengths of the lattice are comparable to the wavelengths of the electron, which rules a lot of materials out,” Dr Du said.
“It has to be a type of material on which the electron can only move on the surface. And you have to find something that is conductive, and also has a very strong spin-orbital coupling effect.
“There are not many elements in the world that have these properties.”
One element that does is silicene. Dr Du and his colleagues created their 2D electronic kagome lattice by twisting together two layers of silicene. At a rotation angle of 21.8 degrees they formed a kagome lattice.
And when the researchers put electrons into it, it behaved as predicted.
“We observed all the quantum phenomena predicted theoretically in our artificial kagome lattice in silicene,” Dr Du said.
The expected benefits of this breakthrough will be much more energy efficient electronic devices and faster, more powerful computers.
About the Research
“Realization of flat band with possible nontrivial topology in electronic Kagome lattice” by Zhi Li, Jincheng Zhuang, Li Wang, Haifeng Feng, Qian Gao, Xun Xu, Weichang Hao, Xiaolin Wang, Chao Zhang, Kehui Wu, Shi Xue Dou, Lan Chen, Zhenpeng Hu and Yi Du is published in Science Advances.
This work was supported by the Australian Research Council (ARC) through Discovery Projects and Linkage Infrastructure, Equipment and Facilities (LIEF) grants, by the Beihang-UOW Joint Research Centre, and by the University of Wollongong through the Vice-Chancellor’s Postdoctoral Research Fellowship Scheme.
The first authors are Dr Zhi Li (UOW Vice-Chancellor’s Postdoctoral Research Fellow) and Associate Professor Jincheng Zhuang (Beihang University).
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Foxconn's Rotating CEO, Yang Qiujin, Named One of Asia's Most Influential Women
10/15/2025 | Foxconn ElectronicsHon Hai Precision Industry Co., Ltd.'s management team has once again received recognition! Rotating CEO Kathy Yang has been named to Fortune magazine's " Most Powerful Women Asia 2025 " list of the 100 most influential women in Asia , achieving a remarkable fifth place in her debut.
Light-curable Solutions for Reliable Electronics in Space Applications
10/15/2025 | Virginia Hogan, DymaxDesigning electronics for space environments, particularly those in low Earth orbit (LEO), requires careful consideration of materials that can withstand extreme conditions while supporting long-term reliability. Engineers designing satellite systems, aerospace instrumentation, and high-altitude platforms face a familiar set of challenges: contamination control, mechanical stress, thermal cycling, and manufacturability.
Advanced Semiconductor Packaging Market Sees Rising Adoption Across Automotive and Industrial Sectors
10/14/2025 | openPRThe semiconductor packaging market size is estimated to reach at a CAGR of 7.2% during the forecast period (2024-2031).
Imec Launches 300mm GaN Program to Develop Advanced Power Devices and Reduce Manufacturing Costs
10/13/2025 | ImecImec, a world-leading research and innovation hub in nanoelectronics and digital technologies, welcomes AIXTRON, GlobalFoundries, KLA Corporation, Synopsys, and Veeco as first partners in its 300mm gallium-nitride (GaN) open innovation program track for low- and high-voltage power electronics applications.
NEDME Returns October 22 — The Northwest’s Premier Design & Manufacturing Expo
10/13/2025 | NEDMEThe Northwest Electronics Design & Manufacturing Expo (NEDME) returns on Wednesday, October 22, 2025, at Wingspan Event & Conference Center, Hillsboro. The event brings together engineers, product designers, manufacturers, educators, and community partners for a full day of industry connection, learning, and networking.