Graphene Boosts GHz Signals Into Terahertz Territory
November 19, 2018 | CORDISEstimated reading time: 2 minutes

Graphene—a one-atom-thick layer of hexagonally arranged carbon atoms—is the thinnest and strongest material known to man and an excellent conductor of heat and electricity. Since 2004, when researchers discovered how to extract it from graphite, graphene has opened new windows of opportunity in the world of science and technology. Over the past decade, scientists have predicted that its unique structure would make it especially efficient in converting optical or electronic signals into signals of much higher frequencies. However, all efforts to prove this were unsuccessful.
Now, for the first time, a team of researchers, two of whom are supported by the EU-funded project EUCALL, have proved that graphene is actually able to convert electronic signals into signals in the terahertz range, with trillions of cycles per second.
Non-Linear Interaction
The silicon-based electronic components used today generate clock speeds in the GHz range, where 1 GHz is equal to 1 000 million cycles per second. The scientists demonstrated that graphene can convert signals with these frequencies into signals with frequencies that are thousands of times higher than those created by silicon.
What makes this feat possible is the highly efficient non-linear interaction between light and matter that occurs in graphene. The researchers used graphene containing a large number of free electrons that originated from the interaction between graphene and the substrate onto which it was deposited. When these electrons became excited by an oscillating electric field in room-temperature conditions, they rapidly shared their energy with bound electrons in the material. The electrons therefore reacted like a heated fluid, changing from liquid to vapour form inside the graphene within trillionths of a second. This transition led to powerful, rapid changes in the material’s conductivity, multiplying the frequency of the original GHz pulses.
“We have now been able to provide the first direct proof of frequency multiplication from gigahertz to terahertz in a graphene monolayer and to generate electronic signals in the terahertz range with remarkable efficiency,” says co-author and Helmholtz Zentrum Dresden-Rossendorf (HZDR) senior scientist Dr Michael Gensch in a press release posted on the project partner’s website.
High Conversion Efficiency
The frequencies of the original electromagnetic pulses that were generated at HZDR’s TELBE terahertz facility ranged between 300 and 680 GHz. The scientists converted them into signals with three, five and seven times the initial frequency. “These conversion efficiencies are remarkably high, given that the electromagnetic interaction occurs in a single atomic layer,” the authors state in their study.
The groundbreaking discovery supported by EUCALL (European Cluster of Advanced Laser Light Sources) makes graphene a promising candidate for the nanoelectronics of the future.
Suggested Items
Imec Joins Forces with MIT’s RLE, MTL and IMES to Accelerate Personalized Healthcare
05/23/2025 | ImecImec, a leading research and innovation hub in nanoelectronics and digital technologies announced their collaboration with Massachusetts Institute of Technology (MIT), a renowned research university in advanced technology and science to research nanoelectronics-based solutions for minimally and non-invasive diagnostic devices for personalized medicine.
Incap UK Invests in SMT Technology as Part of Long-Term Operational Development
05/23/2025 | IncapIncap Electronics UK has completed the second phase of SMT (surface-mount technology) production lines upgrade at its facility in Newcastle-under-Lyme.
Explore TRI’s Test and Inspection Solutions at SMTA Ontario Expo 2025
05/23/2025 | TRITest Research, Inc. (TRI), the leading test and inspection systems provider for the electronics manufacturing industry, will join the SMTA Ontario Expo 2025.
TT Electronics' Cleveland Ohio Facility Re-Certified to Aerospace and Defence Standards AS9100 and Nadcap
05/23/2025 | TT ElectronicsTT Electronics has successfully completed recertification of the Cleveland facility to AS9100 and Nadcap standards. This milestone underscores the company’s unwavering dedication to quality in manufacturing for the aerospace and defence sectors, a commitment proudly upheld for more than 15 years.
Electronics Industry Demand Holds Steady Amid Tariff Turbulence
05/22/2025 | IPCElectronics manufacturers are bracing for higher costs as profit pressures deepen according to IPC’s May Sentiment of the Global Electronics Manufacturing Supply Chain Report.