Solution for Next Generation Nanochips Comes Out of Thin Air
November 20, 2018 | RMIT UniversityEstimated reading time: 2 minutes

Researchers at RMIT University have engineered a new type of transistor, the building block for all electronics. Instead of sending electrical currents through silicon, these transistors send electrons through narrow air gaps, where they can travel unimpeded as if in space.
The device unveiled in material sciences journal Nano Letters, eliminates the use of any semiconductor at all, making it faster and less prone to heating up.
Lead author and PhD candidate in RMIT’s Functional Materials and Microsystems Research Group, Ms Shruti Nirantar, said this promising proof-of-concept design for nanochips as a combination of metal and air gaps could revolutionise electronics. “Every computer and phone has millions to billions of electronic transistors made from silicon, but this technology is reaching its physical limits where the silicon atoms get in the way of the current flow, limiting speed and causing heat,” Nirantar said.
“Our air channel transistor technology has the current flowing through air, so there are no collisions to slow it down and no resistance in the material to produce heat.”
Moore's Law
The power of computer chips—or number of transistors squeezed onto a silicon chip—has increased on a predictable path for decades, roughly doubling every two years. But this rate of progress, known as Moore’s Law, has slowed in recent years as engineers struggle to make transistor parts, which are already smaller than the tiniest viruses, smaller still.
Nirantar says their research is a promising way forward for nano electronics in response to the limitation of silicon-based electronics. “This technology simply takes a different pathway to the miniaturisation of a transistor in an effort to uphold Moore’s Law for several more decades,” Shruti said.
A New Way Forward
Research team leader Associate Professor Sharath Sriram said the design solved a major flaw in traditional solid channel transistors—they are packed with atoms—which meant electrons passing through them collided, slowed down and wasted energy as heat.
“Imagine walking on a densely crowded street in an effort to get from point A to B. The crowd slows your progress and drains your energy,” Sriram said. “Travelling in a vacuum on the other hand is like an empty highway where you can drive faster with higher energy efficiency.”
But while this concept is obvious, vacuum packaging solutions around transistors to make them faster would also make them much bigger, so are not viable.
“We address this by creating a nanoscale gap between two metal points. The gap is only a few tens of nanometers, or 50,000 times smaller than the width of a human hair, but it’s enough to fool electrons into thinking that they are travelling through a vacuum and re-create a virtual outer-space for electrons within the nanoscale air gap,” he said.
The nanoscale device is designed to be compatible with modern industry fabrication and development processes. It also has applications in space—both as electronics resistant to radiation and to use electron emission for steering and positioning ‘nano-satellites.’
“This is a step towards an exciting technology which aims to create something out of nothing to significantly increase speed of electronics and maintain pace of rapid technological progress,” Sriram said.
This work was undertaken at RMIT University’s cutting-edge Micro Nano Research Facility and with support of the Victorian node of the Australian National Fabrication Facility.
Story: Michael Quin
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Smartphone Production Rises 4% QoQ in 2Q25 as Inventory Adjustment Ends
09/12/2025 | TrendForceTrendForce’s latest investigations reveal that global smartphone production reached 300 million units in 2Q25, up 4% QoQ and 4.8% YoY, driven by seasonal demand and the recovery of brands such as Oppo and Transsion following inventory adjustments.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
09/12/2025 | Marcy LaRont, I-Connect007We may be post-Labor Day, but it is still hot-hot-hot here in the great state of Arizona—much like our news cycles, which have continued to snap, crackle, and pop with eye-raising headlines over this past week. In broader global tech news this week, AI and tariff-type restrictions continues to dominate with NVIDIA raising its voice against U.S. lawmakers pushing chip restrictions, ASML investing in a Dutch AI start-up company to the tune of $1.5 billion, and the UAE joining the ranks of the U.S. and China in embracing “open source” with their technology in hopes of accelerating their AI position.
Delta Electronics Posts 26.7% Growth in Sales Revenues for August
09/12/2025 | Delta ElectronicsDelta Electronics, Inc. announced its consolidated sales revenues for August 2025 totaled NT$47,860 million, a 26.7 percent increase as compared to NT$37,770 million for August 2024 and a 5.4 percent increase as compared to NT$45,397 million for July 2025.
Flex Named to TIME's World's Best Companies List for Third Consecutive Year
09/12/2025 | FlexFlex announced its inclusion on the TIME World's Best Companies 2025 list. This marks the third consecutive year the company was included in this prestigious ranking, which recognizes top-performing companies across the globe.
Advanced Packaging: Preparation is Now
09/15/2025 | Nolan Johnson, I-Connect007In this interview, Matt Kelly, CTO for the Global Electronics Association, and Devan Iyer, chief strategist of advanced packaging, define advanced electronics packaging and the critical nature of getting it right in the electronics manufacturing field. They share details from their white paper, “Advanced Packaging to Board Level Integration—Needs and Challenges,” and provide insight into how next-generation packaging will change the design, fabrication, and assembly of printed circuit boards, including the implications for final system assembly.