Racing Electrons in Graphene Under Control
November 27, 2018 | Friedrich-Alexander-Universität Erlangen-NürnbergEstimated reading time: 3 minutes

Being able to control electronic systems using light waves instead of voltage signals is the dream of physicists all over the world. The advantage is that electromagnetic light waves oscillate at petaherz frequency. This means that computers in the future could operate at speeds a million times faster than those of today.
Current control in electronics that is one million times faster than in today's systems is a dream for many. Ultimately, current control is one of the most important components as it is responsible for data and signal transmission. Controlling the flow of electrons using light waves instead of voltage signals, as is now the case, could make this dream a reality. However, up to now, it has been difficult to control the flow of electrons in metals as metals reflect light waves and the electrons inside them cannot be influenced by these light waves.
Physicists at FAU have therefore turned to graphene, a semi-metal that comprises only one single layer of carbon and is so thin that enough light can penetrate to enable electrons to be set in motion. In an earlier study, physicists at the Chair for Laser Physics had already succeeded in generating an electric signal at a time scale of only one femtosecond by using a very short laser pulse. This is equivalent to one millionth of one billionth of a second. In these extreme time scales, electrons reveal their quantum nature as they behave like a wave. The wave of electrons glides through the material as it is driven by the light field (the laser pulse).
Under control
The researchers went one step further in the current study. They aimed a second laser pulse at this light-driven wave. This second pulse now enables the electron wave to pass through the material in two dimensions. The second laser pulse can be used to deflect, accelerate or even change the direction of the electron wave. This enables information to be transmitted by this wave, depending on the exact time, strength and direction of the second pulse.
It's possible to go one step further. 'Imagine the electron wave is a wave in water. Waves in water can split because of an obstacle and converge and interfere when they have passed the obstacle. Depending on how the sub-waves stand in relation to one another, they either amplify or cancel each other out. We can use the second laser pulse to modify the individual sub-waves in a targeted manner and thus control their interference', explains Christian Heide from the Chair of Laser Physics. 'In general, it's very difficult to control quantum phenomena, such as the wave characteristics of electrons in this instance. This is because it's very difficult to maintain the electron wave in a material as the electron wave scatters with other electrons and loses its wave characteristics. Experiments in this field are typically performed at extremely low temperatures. We can now carry out these experiments at room temperature, since we can control the electrons using laser pulses at such high speeds that there is no time left for the scatter processes with other electrons. This enables us to research several new physical processes that were previously not accessible.'
It means the scientists have made significant progress towards realising electronic systems that can be controlled using light waves. In the next few years they will be investigating whether electrons in other two-dimensional materials can also be controlled in the same way. 'Maybe we will be able to use materials research to modify the characteristics of materials in such a way that it will soon be possible to build small transistors that can be controlled by light', says Heide.
Suggested Items
Panasonic Avionics Completes Multi-Orbit Network Optimization Following Seamless Leo / Geo Switching in Flight
04/28/2025 | Panasonic AvionicsPanasonic Avionics Corporation (Panasonic Avionics), a leading provider of in-flight entertainment and connectivity (IFEC) solutions, has announced the successful optimization of its multi-orbit satellite network following switching between LEO and GEO networks in its flight test program.
QD-OLED to Account for 73% of OLED Monitor Shipments in 2025, Driven by Advancing Technology and New Products
04/16/2025 | TrendForceTrendForce’s latest investigations reveal that ongoing advancements in OLED displays are propelling the growth of QD-OLED monitor shipments. QD-OLED’s share of OLED monitor shipments is expected to rise from 68% in 2024 to 73% in 2025, highlighting its strong competitiveness in the high-end monitor market.
TDK Demonstrates the World's First ‘Spin Photo Detector’ Capable of 10X Data Transmission Speeds for the Next Generation of AI
04/16/2025 | PRNewswireThis new device is expected to be a key driver for implementing photoelectric conversion technology that boosts data transmission and data processing speed, particularly in AI applications, while simultaneously reducing power consumption.
Satair, RTX’s Collins Aerospace Extend 50-year Relationship
04/14/2025 | Collins AerospaceSatair and Collins Aerospace, an RTX business, have signed a four-year extension of their cabin interior parts distribution agreement, continuing a relationship that has spanned more than 50 years.
The World's Smallest PPG Sensor Head
04/04/2025 | BUSINESS WIRESCIVAX Corporation and TSLC Corporation, a SemiLEDs Corporation wholly owned company announced that SCIVAX+TSLC have developed the world's smallest PPG (PhotoPlethysmoGraphy)* sensor head, which will be presented at the display related technology exhibition ”Touch Taiwan” to be held in Taipei, Taiwan from April 16 to 18, 2025. The samples of the PPG sensor head for evaluation will begin in April 2025.