Graphene Unlocks New Potential for 'Smart Textiles'
December 4, 2018 | University of ExeterEstimated reading time: 2 minutes

The quest to create affordable, durable and mass-produced ‘smart textiles’ has been given fresh impetus through the use of the wonder material graphene.
An international team of scientists, led by Professor Monica Craciun from the University of Exeter Engineering department, has pioneered a new technique to create fully electronic fibres that can be incorporated into the production of everyday clothing.
Currently, wearable electronics are achieved by essentially gluing devices to fabrics, which can mean they are too rigid and susceptible to malfunctioning.
The new research instead integrates the electronic devices into the fabric of the material, by coating electronic fibres with light-weight, durable components that will allow images to be shown directly on the fabric.
The research team believe that the discovery could revolutionise the creation of wearable electronic devices for use in a range of every day applications, as well as health monitoring, such as heart rates and blood pressure, and medical diagnostics.
The international collaborative research, which includes experts from the Centre for Graphene Science at the University of Exeter, the Universities of Aveiro and Lisbon in Portugal, and CenTexBel in Belgium, is published in the scientific journal Flexible Electronics.
Professor Craciun, co-author of the research said: “For truly wearable electronic devices to be achieved, it is vital that the components are able to be incorporated within the material, and not simply added to it.
Dr Elias Torres Alonso, Research Scientist at Graphenea and former PhD student in Professor Craciun’s team at Exeter added “This new research opens up the gateway for smart textiles to play a pivotal role in so many fields in the not-too-distant future. By weaving the graphene fibres into the fabric, we have created a new technique to all the full integration of electronics into textiles. The only limits from now are really within our own imagination.”
At just one atom thick, graphene is the thinnest substance capable of conducting electricity. It is very flexible and is one of the strongest known materials. The race has been on for scientists and engineers to adapt graphene for the use in wearable electronic devices in recent years.
This new research used existing polypropylene fibres – typically used in a host of commercial applications in the textile industry – to attach the new, graphene-based electronic fibres to create touch-sensor and light-emitting devices.
The new technique means that the fabrics can incorporate truly wearable displays without the need for electrodes, wires of additional materials.
Professor Saverio Russo, co-author and from the University of Exeter Physics department, added: “The incorporation of electronic devices on fabrics is something that scientists have tried to produce for a number of years, and is a truly game-changing advancement for modern technology.”
Dr Ana Neves, co-author and also from Exeter’s Engineering department added “The key to this new technique is that the textile fibres are flexible, comfortable and light, while being durable enough to cope with the demands of modern life.”
In 2015, an international team of scientists, including Professor Craciun, Professor Russo and Dr Ana Neves from the University of Exeter, have pioneered a new technique to embed transparent, flexible graphene electrodes into fibres commonly associated with the textile industry.
Suggested Items
Smart Automation AI—Revolutionizing Inspection in Electronics Manufacturing
05/27/2025 | Josh Casper -- Column: Smart AutomationArtificial Intelligence (AI) is rapidly becoming a staple in our personal and professional lives. In electronics manufacturing, integrating AI to combat common inefficiencies and to contextualize data will open new doors into how we supplement our traditional processes. In some specific areas of the electronics manufacturing process, integration of AI on the factory floor is already having a tremendous effect. One such area is PCBA inspection, particularly 3D automated optical inspection (AOI) systems.
Indium Promotes O’Leary to Director of Global Accounts
05/27/2025 | Indium CorporationIndium Corporation, a leading materials refiner, smelter, manufacturer, and supplier to electronics, semiconductor, thin-film, and thermal management industries, announces the promotion of Brian O’Leary to Director of Global Accounts.
Promex Industries CEO Richard Otte Honored with IEEE Electronics Manufacturing Technology Award
05/27/2025 | PromexPromex Industries, Inc., a Silicon Valley-based provider of advanced design, packaging, and microelectronics assembly services, today announced that CEO Richard (Dick) Otte has received the 2025 Electronics Manufacturing Technology Award from the IEEE Electronics Packaging Society (EPS).
Robert C. Donovan Joins DISTRON, Marking the Third Generation in Family Leadership
05/26/2025 | Distron Corp.DISTRON CORPORATION, a leading U.S.-based electronics contract manufacturer, proudly announces that Robert C. Donovan, son of CEO Robert H. Donovan and grandson of Founder Robert G. Donovan, has joined the company as a Management Trainee. This milestone marks the beginning of the third generation of family leadership at the company.
American Made Advocacy: Lobbying Congress Supports the Supply Chain
05/27/2025 | Shane Whiteside -- Column: American Made AdvocacyThe upheaval in world markets is driving daily headlines. The global supply chain has seemed “normal” for the microelectronics industry because over the past three decades, an increasing percentage of microelectronics components and materials have been made overseas. For many years, other countries, primarily in Asia, invested heavily in their microelectronics industry while U.S. companies offshored manufacturing services in pursuit of the lowest cost.