Major Breakthroughs for Spintronic Logic Devices in Two Different Implementations
December 4, 2018 | ImecEstimated reading time: 2 minutes
At the 2018 IEEE International Electron Devices Meeting (IEDM), imec, the world-leading research and innovation hub in nano-electronics and digital technology, and its partners present the first experimental demonstration of full majority gate operation based on spin-wave interference in scaled devices. Circuit-level benchmarking recommends majority gates based on spin-waves for ultralow power applications. Imec also demonstrated the first logic gate implementation based on magnetic domain wall propagation. Fully integrated logic devices were fabricated on 300mm wafers using CMOS compatible processes. These breakthroughs constitute the foundation of a robust spintronics platform that will be used for functional spintronic logic components for low-power applications.
In the quest for low-power electronics, imec is investigating majority gates based on spintronics phenomena as a possible path towards more efficient circuits. Majority gates are ‘democratic’ devices that return true if more than 50% of their inputs are true. Complex logic operation such as addition and multiplication can be emulated in a much more compact and energy efficient way than with the conventional NAND-based circuits. Imec now reports breakthroughs for two different implementations of majority gates. Both implementations are based on spintronics, which exploits the magnetization state in a ferromagnet rather than the charge of electrons to perform logic operations.
A first breakthrough is reported for devices that use the interference of spin waves to enable logic operation. While basic functionality was shown earlier for large-scale devices, imec, in collaboration with University Paris-Sud, has for the first time experimentally demonstrated full majority gate operation in sub-µm devices. The research team has verified the full truth table of a majority logic function, which lists all possible configurations of the input variables together with the result of the operation of those values. They also demonstrated the ability to distinguish between strong and weak majority, making these devices attractive for neuromorphic applications.
The second breakthrough is reported for devices based on magnetic domain wall generation and propagation, another spintronics phenomenon. Imec, in collaboration with Intel and University Paris-Sud reports first logic function demonstration based on domain wall propagation. For the first time, it was demonstrated the nucleation, propagation, and detection of magnetic domain walls with magnetic tunnel junctions connected by a free layer ferromagnet. The domain walls are generated via spin transfer torque. The motion of the domain walls was monitored and verified via tunnel magnetoresistance measurements through a series of adjacent magnetic tunnel junctions which share the free layer. The devices were fabricated on 300mm wafers using CMOS compatible production processes. Imec’s capability to pattern these delicate structures is a key enabler for the fabrication process.
Imec’s research into advanced logic scaling is performed in cooperation with imec’s key CMOS program partners including GlobalFoundries, Huawei, Intel, Micron, Qualcomm, Samsung, SK Hynix, Sony Semiconductor Solutions, TOSHIBA Memory, TSMC and Western Digital.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
ROHM Develops Ultra-Compact CMOS Op Amp: Delivering Industry-Leading Ultra-Low Circuit Current
09/11/2025 | ROHMROHM’s ultra-compact CMOS Operational Amplifier (op amp) TLR1901GXZ achieves the industry’s lowest operating circuit current.
Medical Device Contract Manufacturing Market Worth $140.84 Billion by 2030 with 10.9% CAGR
08/25/2025 | PRNewswireThe global Medical Device Contract Manufacturing Market, valued at US$78.58 billion in 2024, stood at US$83.77 billion in 2025 and is projected to advance at a resilient CAGR of 10.9% from 2025 to 2030, culminating in a forecasted valuation of US$140.84 billion by the end of the period.
Analog Devices Reports Fiscal Q3 2025 Financial Results
08/21/2025 | Analog Devices, Inc.Analog Devices, Inc., a global semiconductor leader, announced financial results for its fiscal third quarter 2025, which ended August 2, 2025.
Review: PCEA Orange County Summer Meeting
08/06/2025 | Dan Feinberg, Technology Editor, I-Connect007The Printed Circuit Engineering Association (PCEA) represents a community of engineers, designers, and industry influencers dedicated to the advancement of PCB technology, design, and manufacturing, and the growth and knowledge of its membership. PCEA regularly hosts events to share the latest developments, best practices, and visions for the future of electronic design and manufacturing. The Orange County chapter seems to be one of the largest and most active ones and I was invited to attend the latest chapter event on July 24 in Costa Mesa, California.
Semiconductors Get Magnetic Boost with New Method from UCLA Researchers
07/31/2025 | UCLA NewsroomA new method for combining magnetic elements with semiconductors — which are vital materials for computers and other electronic devices — was unveiled by a research team led by the California NanoSystems Institute at UCLA.