New Graphene-based Sensor Design Could Improve Food Safety
December 5, 2018 | The Optical SocietyEstimated reading time: 2 minutes

In the U.S., more than 100 food recalls were issued in 2017 because of contamination from harmful bacteria such as Listeria, Salmonella or E. coli. A new sensor design could one day make it easier to detect pathogens in food before products hit the supermarket shelves, thus preventing sometimes-deadly illnesses from contaminated food.
Image Caption: Researchers designed a new sensor with an array of nanoscale graphene disks that each contain an off-center hole. When light from above hits the arrays, the interaction between the disks and their holes increases the sensitivity of the sensor and enables the detection of two substances at once (red balls). The disks are located between an ion-gel (green) and calcium fluoride (dark pink) layers, which are used to apply a voltage to the sensor and to aid in the generation of a surface plasmon, respectively.
In the journal Optical Materials Express, researchers report a new design for a sensor that can simultaneously detect multiple substances including dangerous bacteria and other pathogens. In addition to food safety, the new design could improve detection of gases and chemicals for a wide range of other applications.
“Our design is based on graphene sheets, which are two-dimensional crystals of carbon just one atom thick,” said research team member Bing-Gang Xiao, from China Jiliang University. “The sensor is not only highly sensitive but can also be easily adjusted to detect different substances.”
Sensing with Graphene
The excellent optical and electronic properties of graphene make it attractive for sensors that use electromagnetic waves known as plasmons that propagate along the surface of a conducting material in response to light exposure. A substance can be detected by measuring how the refractive index of the sensor changes when a substance of interest is close to the graphene’s surface.
Researchers have taken advantage of graphene’s unique properties to create sensors and materials for a range of applications in recent years. Compared to metals like gold and silver, graphene exhibits stronger plasmon waves with longer propagation distances. In addition, the wavelength at which graphene is responsive can be changed by applying a polarization voltage instead of recreating the whole device. However, few previous research efforts have demonstrated sensitive graphene sensors that work with the infrared wavelengths necessary to detect bacteria and biomolecules.
For the new sensor, the researchers used theoretical calculations and simulations to design an array of nanoscale graphene disks that each contain an off-center hole. The sensor includes ion-gel and silicon layers that can be used to apply a voltage to tune the graphene’s properties for detection of various substances.
The interaction between the disks and their holes creates what is known as the plasmon hybridization effect, which increases the sensitivity of the device. The hole and the disk also create different wavelength peaks that can each be used to detect the presence of different substances simultaneously.
Simulations performed by the researchers using mid-infrared wavelengths showed that their new sensor platform would be more sensitive to substances present in gases, liquids or solids than using discs without holes.
The researchers are now working to improve the process that would be used to make the array of nanoscale discs. The accuracy at which these structures are fabricated will greatly impact the performance of the sensor.
“We also want to explore whether the graphene plasmon hybridization effect could be used to aid the design of dual-band mid-infrared optical communication devices,” said Xiao.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Deca, Silicon Storage Technology Announce Strategic Collaboration to Enable NVM Chiplet Solutions
09/11/2025 | Microchip Technology Inc.As traditional monolithic chip designs grow in complexity and increase in cost, the interest and adoption of chiplet technology in the semiconductor industry also increases.
I-Connect007 Launches New Podcast Series on Ultra High Density Interconnect (UHDI)
09/10/2025 | I-Connect007I-Connect007 is excited to announce the debut of its latest podcast series, which shines a spotlight on one of the most important emerging innovations in electronics manufacturing: Ultra-High-Density Interconnect (UHDI). The series kicks off with Episode One, “Ultra HDI: What does it mean to people? Why would they want it?” Host Nolan Johnson is joined by guest expert John Johnson, Director of Quality and Advanced Technology at American Standard Circuits (ASC).
Global Citizenship: Together for a Perfect PCB Solution
09/10/2025 | Tom Yang -- Column: Global CitizenshipIf there’s one thing we’ve learned in the past few decades of electronics evolution, it’s that no region has a monopoly on excellence. Whether it’s materials science breakthroughs in Europe, manufacturing efficiencies in China, or design innovations in Silicon Valley, the PCB industry thrives on collaboration.
The Shaughnessy Report: Winning the Signal Integrity Battle
09/09/2025 | Andy Shaughnessy -- Column: The Shaughnessy ReportWhen I first started covering this industry in 1999, signal integrity was the hip new thing in PCB design. Conference classes on signal integrity were packed to the walls, and an SI article was guaranteed to get a lot of reads.
The Signal Integrity Issue: Design007 Magazine September 2025
09/09/2025 | I-Connect007 Editorial TeamAs the saying goes, “If you don’t have signal integrity problems now, you will eventually.” This month, our experts share a variety of design techniques that can help PCB designers and design engineers achieve signal integrity.