2D Materials Skip the Energy Barrier by Growing One Row at a Time
December 7, 2018 | Pacific Northwest National LaboratoryEstimated reading time: 4 minutes
This row by row process provides clues for the design of 2D materials. Currently, to form certain shapes, designers sometimes need to put systems far out of equilibrium, or balance. That is difficult to control, said De Yoreo.
"But in 1D, the difficulty of getting things to form in an ordered structure goes away," he added. "Then you can operate right near equilibrium and still grow these structures without losing control of the system."
It could change assembly pathways for those engineering microelectronics or even bodily tissues.
Huang's team at UCLA has demonstrated new opportunities for devices based on 2D materials assembled through interactions in solution. But she said the current manual processes used to construct such materials have limitations, including scale-up capabilities.
"Now with the new understanding," said Huang, "we can start to exploit the specific interactions between molecules and 2D materials for automatous assembly processes."
The next step, said De Yoreo, is to make artificial molecules that have the same properties as the peptides studied in the new paper — only more robust.
At PNNL, he and his team are looking at stable peptoids, which are as easy to synthesize as peptides but can better handle the temperatures and chemicals used in the processes to construct the desired materials.
Other study authors are affiliated with PNNL, UW, UCLA, the California NanoSystems Institute at UCLA, and the University of Colorado, Boulder. Simulations were performed using the Argonne Leadership Computing Facility, a Department of Energy Office of Science user facility.
The research was supported by the National Science Foundation's Emerging Frontiers in Research and Innovation: Two-Dimensional Atomic-layer Research and Engineering, or EFRI-2DARE, program.
Page 2 of 2Suggested Items
American Made Advocacy: Lobbying Congress Supports the Supply Chain
05/27/2025 | Shane Whiteside -- Column: American Made AdvocacyThe upheaval in world markets is driving daily headlines. The global supply chain has seemed “normal” for the microelectronics industry because over the past three decades, an increasing percentage of microelectronics components and materials have been made overseas. For many years, other countries, primarily in Asia, invested heavily in their microelectronics industry while U.S. companies offshored manufacturing services in pursuit of the lowest cost.
Dymax to Showcase Light-Cure Solutions at The European Battery Show 2025
05/23/2025 | Dymax CorporationDymax, a global manufacturer of rapid light-curing materials and equipment, will exhibit at The European Battery Show 2025 in Stand 4-C60
Pioneering Energy-Efficient AI with Innovative Ferroelectric Technology
05/22/2025 | FraunhoferAs artificial intelligence (AI) becomes increasingly integrated into sectors such as healthcare, autonomous vehicles and smart cities, traditional computing architectures face significant limitations in processing speed and energy efficiency
Self-Healing Materials Could Unlock the Potential of Tomorrow’s Technology, Reports IDTechEx
05/22/2025 | IDTechExA sci-fi movie trope is the virtually indestructible robot, capable of operating without rest due to extended battery life, able to interact with its surroundings like a human thanks to advanced soft robotic components, and fully autonomous due to an extensive suite of sensors.
STMicroelectronics Announces Expanded "Lab-in-Fab" Collaboration in Singapore to Advance Piezoelectric MEMS Technology
05/22/2025 | STMicroelectronicsSTMicroelectronics, a global semiconductor leader serving customers across the spectrum of electronics applications, in collaboration with the A*STAR Institute of Microelectronics (A*STAR IME) and ULVAC, announces the expansion of the “Lab-in-Fab” (LiF) in Singapore.