Microscopic Devices that Control Vibrations Could Allow Smaller Mobile Devices
December 17, 2018 | CaltechEstimated reading time: 1 minute

To make modern communications possible, today's mobile devices make use of components that use acoustic waves (vibrations) to filter or delay signals. However, current solutions have limited functionalities that prevent further miniaturization of the mobile devices and constrain the available communication bandwidth.
Now, a research team led by Chiara Daraio, Caltech professor of mechanical engineering, has developed new versions of these components with abilities previous incarnations did not possess. The components, known as phononic devices, could find uses in new kinds of sensors, improved cell phone technologies applied physics, and quantum computing.
The phononic devices include parts that vibrate extremely fast, moving back and forth up to tens of millions of times per second. The team developed these devices by creating silicon nitride drums that are just 90 nanometers thick. (A human hair is about a thousand times thicker.) The drums are arranged into grids, with different grid patterns having different properties.
Daraio, along with former Caltech postdoctoral scholar Jinwoong Cha showed that arrays of these drums can act as tunable filters for signals of different frequencies. They also showed that the devices can act like one-way valves for high-frequency waves. The ability to transmit waves in only one direction helps keep the signal stronger by reducing interference.
These findings open opportunities to design new devices—such as phononic transistors and radio-frequency isolators—based on phonons instead of electrons, Cha and Daraio say.
Support for the research was provided by the National Science Foundation, the Binnig and Rohrer Nanotechnology Center at IBM Research – Zurich, and the Kavli Nanoscience Institute at Caltech.
Written by Emily Velasco
Suggested Items
Count On Tools Recognizes Donna Orr’s Ongoing Leadership and Impact Across 27+ Years
06/26/2025 | Count On ToolsCount On Tools, Inc. (COT), a leading provider of precision components and SMT spare parts, is proud to recognize Donna Orr, Executive Manager, for her continued dedication and leadership as she marks more than 27 years with the company.
A Record Year for the 75th Annual IEEE Electronic Components and Technology Conference (ECTC)
06/26/2025 | ECTCThe 75th annual 2025 IEEE Electronic Components and Technology Conference (ECTC), held at the Gaylord Texan Resort & Convention Center here May 27-30, had record attendance, a record number of paper submissions/presentations, record international and student participation, and a record number of exhibitors in a sold-out exhibition hall:
The Death of the Microsection
06/26/2025 | Bob Neves, Reliability Assessment Solutions, Inc.I got my start out of college grinding and polishing PCB microsections. My thumbs are a bit arthritic today because of the experience (microsection grinders know what I mean). Back then, via structures were rather large, and getting to the center in six steps of grinding and polishing was easy compared to what my team has been doing recently at the lab.
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.
Fresh PCB Concepts: Assembly Challenges with Micro Components and Standard Solder Mask Practices
06/26/2025 | Team NCAB -- Column: Fresh PCB ConceptsMicro components have redefined what is possible in PCB design. With package sizes like 01005 and 0201 becoming more common in high-density layouts, designers are now expected to pack more performance into smaller spaces than ever before. While these advancements support miniaturization and functionality, they introduce new assembly challenges, particularly with traditional solder mask and legend application processes.