Microscopic Devices that Control Vibrations Could Allow Smaller Mobile Devices
December 17, 2018 | CaltechEstimated reading time: 1 minute

To make modern communications possible, today's mobile devices make use of components that use acoustic waves (vibrations) to filter or delay signals. However, current solutions have limited functionalities that prevent further miniaturization of the mobile devices and constrain the available communication bandwidth.
Now, a research team led by Chiara Daraio, Caltech professor of mechanical engineering, has developed new versions of these components with abilities previous incarnations did not possess. The components, known as phononic devices, could find uses in new kinds of sensors, improved cell phone technologies applied physics, and quantum computing.
The phononic devices include parts that vibrate extremely fast, moving back and forth up to tens of millions of times per second. The team developed these devices by creating silicon nitride drums that are just 90 nanometers thick. (A human hair is about a thousand times thicker.) The drums are arranged into grids, with different grid patterns having different properties.
Daraio, along with former Caltech postdoctoral scholar Jinwoong Cha showed that arrays of these drums can act as tunable filters for signals of different frequencies. They also showed that the devices can act like one-way valves for high-frequency waves. The ability to transmit waves in only one direction helps keep the signal stronger by reducing interference.
These findings open opportunities to design new devices—such as phononic transistors and radio-frequency isolators—based on phonons instead of electrons, Cha and Daraio say.
Support for the research was provided by the National Science Foundation, the Binnig and Rohrer Nanotechnology Center at IBM Research – Zurich, and the Kavli Nanoscience Institute at Caltech.
Written by Emily Velasco
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Smart Automation: Odd-form Assembly—Dedicated Insertion Equipment Matters
09/09/2025 | Josh Casper -- Column: Smart AutomationLarge, irregular, or mechanically unique parts, often referred to as odd-form components, have never truly disappeared from electronics manufacturing. While many in the industry have been pursuing miniaturization, faster placement speeds, and higher-density PCBs, certain market sectors are moving in the opposite direction.
Talking with Tamara: Floor Planning Policies
09/04/2025 | Andy Shaughnessy, Design007 MagazineTamara Jovanovic is an electrical engineer with Masimo, a medical equipment manufacturer. She’s been designing PCBs for seven years and earned a master’s degree in electrical engineering in 2022. I asked Tamara to share her thoughts on floor planning—the challenges, techniques, and advice for designers setting up floor planning strategies.
Yamaha Presents New Ways to Improve Surface-mount Performance at Productronica 2025
09/02/2025 | Yamaha Robotics SMT SectionYamaha Robotics Europe SMT Section will bring innovations that boost flexibility, speed, and efficiency in surface-mount assembly to Productronica 2025 in Munich this November.
Connect the Dots: How to Avoid Five Common Causes of Board Failure
09/04/2025 | Matt Stevenson -- Column: Connect the DotsBoards fail for various reasons, and because I’ve been part of the PCB industry for a long time, I’ve seen most of the reasons for failure. As part of my ongoing crusade to help designers design for the reality of manufacturing, here are five common causes for board failure and how to avoid them.
Mastering PCB Floor Planning
08/28/2025 | Stephen V. Chavez, Siemens EDAPlacement of PCB components is far more than just fitting components onto a board. It’s a strategic and critical foundational step, often called “floor planning,” that profoundly impacts the board’s performance, reliability, manufacturability, and cost. Floor planning ties into the solvability perspective, with performance and manufacturability being the other two competing perspectives for addressing and achieving success in PCB design.