Computer Chip Vulnerabilities Discovered by WSU Researchers
December 17, 2018 | Washington State UniversityEstimated reading time: 2 minutes

A Washington State University research team has uncovered significant and previously unknown vulnerabilities in high‑performance computer chips that could lead to failures in modern electronics.
The researchers found they could damage the on‑chip communications system and shorten the lifetime of the whole computer chip significantly by deliberately adding malicious workload.
Led by Partha Pande, Boeing Centennial Chair, and Janardhan Rao Doppa, assistant professor in the School of Electrical Engineering and Computer Science, they reported on the work during the recent 2018 IEEE/ACM International Symposium on Networks-on-Chip.
Researchers have been working to understand the vulnerabilities of computer chips as a way to prevent malicious attacks on the electronics that make up everyday life. Some consumer electronics vendors, such as Apple and Samsung, have been accused of exploiting vulnerabilities in their own electronics and sending software updates that intentionally slow down earlier phone models as a way to encourage consumers to purchase new products.
Previous researchers have studied computer chip components, such as the processors, computer memory and circuits for security vulnerabilities, but the WSU research team found significant vulnerabilities in the sophisticated communications backbone of high‑performance computer chips.
“The communications system is the glue that holds everything together,” said Pande. “When it starts to malfunction, the whole system is going to crumble.”
High‑performance computers use a large number of processors and do parallel processing for big data applications and cloud computing, and the communications system coordinates the processors and memory. Researchers are working to increase the number of processors and incorporate high‑performance capabilities into hand‑held devices.
The researchers devised three “craftily constructed deleterious” attacks to test the communications system. This additional workload enhanced electromigration-induced stress and crosstalk noise. The researchers found that a limited number of crucial vertical links of the communication system were particularly vulnerable to fail. Those links connect the processors in a stack and allows them to talk with each other.
“We determined how an agent can target the communication system to start malfunctions in the chip,” said Pande. “The role of the communications and the threat had not been clear to the research community before.”
The researchers will now be working to develop ways to mitigate the problem, such as automated techniques and algorithms to detect and thwart attacks.
The work was part of National Science Foundation and the U.S. Army Research Office funded projects. The WSU team is collaborating with researchers from New York University and Duke University.
This figure shows a 3D manycore chip where the processing cores are connected through vertical links.
By Tina Hilding, Voiland College of Engineering and Architecture
Suggested Items
Accenture Acquires SYSTEMA to Drive Manufacturing Automation for Semiconductor Clients
07/02/2025 | AccentureAccenture has acquired SYSTEMA, a provider of software solutions and consulting services for manufacturing automation, headquartered in Dresden, Germany.
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
IBM, RIKEN Unveil First IBM Quantum System Two Outside of the U.S.
06/24/2025 | IBMIBM and RIKEN, a national research laboratory in Japan, today unveiled the first IBM Quantum System Two ever to be deployed outside of the United States and beyond an IBM Quantum Data Center.