Computer Chip Vulnerabilities Discovered by WSU Researchers
December 17, 2018 | Washington State UniversityEstimated reading time: 2 minutes

A Washington State University research team has uncovered significant and previously unknown vulnerabilities in high‑performance computer chips that could lead to failures in modern electronics.
The researchers found they could damage the on‑chip communications system and shorten the lifetime of the whole computer chip significantly by deliberately adding malicious workload.
Led by Partha Pande, Boeing Centennial Chair, and Janardhan Rao Doppa, assistant professor in the School of Electrical Engineering and Computer Science, they reported on the work during the recent 2018 IEEE/ACM International Symposium on Networks-on-Chip.
Researchers have been working to understand the vulnerabilities of computer chips as a way to prevent malicious attacks on the electronics that make up everyday life. Some consumer electronics vendors, such as Apple and Samsung, have been accused of exploiting vulnerabilities in their own electronics and sending software updates that intentionally slow down earlier phone models as a way to encourage consumers to purchase new products.
Previous researchers have studied computer chip components, such as the processors, computer memory and circuits for security vulnerabilities, but the WSU research team found significant vulnerabilities in the sophisticated communications backbone of high‑performance computer chips.
“The communications system is the glue that holds everything together,” said Pande. “When it starts to malfunction, the whole system is going to crumble.”
High‑performance computers use a large number of processors and do parallel processing for big data applications and cloud computing, and the communications system coordinates the processors and memory. Researchers are working to increase the number of processors and incorporate high‑performance capabilities into hand‑held devices.
The researchers devised three “craftily constructed deleterious” attacks to test the communications system. This additional workload enhanced electromigration-induced stress and crosstalk noise. The researchers found that a limited number of crucial vertical links of the communication system were particularly vulnerable to fail. Those links connect the processors in a stack and allows them to talk with each other.
“We determined how an agent can target the communication system to start malfunctions in the chip,” said Pande. “The role of the communications and the threat had not been clear to the research community before.”
The researchers will now be working to develop ways to mitigate the problem, such as automated techniques and algorithms to detect and thwart attacks.
The work was part of National Science Foundation and the U.S. Army Research Office funded projects. The WSU team is collaborating with researchers from New York University and Duke University.
This figure shows a 3D manycore chip where the processing cores are connected through vertical links.
By Tina Hilding, Voiland College of Engineering and Architecture
Suggested Items
MICROOLED Announces Partnership with Vortex Optics and Brand New US Headquarters
05/02/2025 | BUSINESS WIREMICROOLED Inc., the leading global supplier of AMOLED displays, is proud to announce their partnership with Vortex Optics to advance the development of high-performance weapon sights for optical sighting systems.
LG Innotek to Build FC-BGA into 700 Million USD Business with State-of-the-art Dream Factory
05/01/2025 | PR NewswireLG unveiled the Dream Factory, a hub for the production of FC-BGAs (Flip Chip Ball Grid Arrays), the company's next-generation growth engine, to the media for the first time and announced it on the 30th April.
SEMI 3D & Systems Summit to Spotlight Trends in Hybrid Bonding, Chiplet Architecture and Geopolitical Dynamics
05/01/2025 | SEMILeading experts in 3D integration and systems for semiconductor manufacturing applications will gather at the annual SEMI 3D & Systems Summit, June 25-27, 2025, in Dresden.
The EEcosystem and Dr. Eric Bogatin Launch Free Masterclass for Electronics Engineers
05/01/2025 | The EEcosystemThe EEcosystem, a podcast media and education brand serving professional electronics engineers, is proud to announce the launch of a new online learning platform: The EEcosystem Electronics Masterclass. The platform debuts with Transmission Lines 101, a free course created in partnership with world-renowned signal integrity expert Dr. Eric Bogatin. The course will be available starting May 1, 2025.
Kasuo Electronics Launches Advanced Testing Laboratory to Strengthen Global Supply Chain Quality Assurance
04/29/2025 | BUSINESS WIREKasuo Electronics Co., Ltd, a globally recognized trader of electronic components, has officially operationalized its state-of-the-art testing laboratory.