Data Storage Using Individual Molecules
December 18, 2018 | University of BaselEstimated reading time: 2 minutes

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal small, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.
Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost all forms of media, phase transition is used for storage. For the creation of CDs, for example, a very thin sheet of metal within the plastic is used that melts within microseconds and then solidifies again. Enabling this on the level of atoms or molecules is the subject of a research project led by researchers at the University of Basel.
Changing the Phase of Individual Atoms for Data Storage
In principle, a phase change on the level of individual atoms or molecules can be used to store data; storage devices of this kind already exist in research. However, they are very labor-intensive and expensive to manufacture. The group led by Professor Thomas Jung at the University of Basel is working to produce such tiny storage units consisting of only a few atoms using the process of self-organization, thereby enormously simplifying the production process.
To this end, the group first produced an organometallic network that looks like a sieve with precisely defined holes. When the right connections and conditions are chosen, the molecules arrange themselves independently into a regular supramolecular structure.
The physicist Aisha Ahsan, lead author of the current study, has now added individual Xenon gas atoms to the holes, which are only a bit more than one nanometer in size. By using temperature changes and locally applied electrical pulses, she succeeded in purposefully switching the physical state of the Xenon atoms between solid and liquid. She was able to cause this phase change in all holes at the same time by temperature. The temperatures for the phase transition depend on the stability of the Xenon clusters, which varies based on the number of Xenon atoms. With the microscope sensor, she has induced the phase change also locally, for an individual Xenon containing pore.
As these experiments have to be conducted at extremely low temperatures of just a few Kelvin (below -260°C), Xenon atoms themselves cannot be used to create new data storage devices. The experiments have proven, however, that supramolecular networks are suited in principle for the production of tiny structures, in which phase changes can be induced with just a few atoms or molecules.
“We will now test larger molecules as well as short-chain alcohols. These change state at higher temperatures, which means that it may be possible to make use of them,” said Professor Thomas Jung, who supervised the work.
The study is a collaboration between the Swiss Nanoscience Institute (SNI), the Department of Physics at the University of Basel and the Paul Scherrer Institute (PSI) and the Universities of Heidelberg and Linköping.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Procense Raises $1.5M in Seed Funding to Accelerate AI-Powered Manufacturing
09/11/2025 | BUSINESS WIREProcense, a San Francisco-based industrial automation startup developing cutting-edge AI and remote sensing technologies for process manufacturers has raised $1.5 million in a seed funding round led by Kevin Mahaffey, Business Insider’s #1 seed investor of 2025 and HighSage Ventures, a Boston-based family office that primarily invests in public and private companies in the global software, internet, consumer, and financial technology sectors.
Zuken Announces E3.series 2026 Release for Accelerated Electrical Design and Enhanced Engineering Productivity
09/10/2025 | ZukenZuken reveals details of the upcoming 2026 release of E3.series, which will introduce powerful new features aimed at streamlining electrical and fluid design, enhancing multi-disciplinary collaboration, and boosting engineering productivity.
AI Infrastructure Boosts Global Semiconductor Revenue Growth to 17.6% in 2025
09/09/2025 | IDCAccording to the Worldwide Semiconduct o r Technology and Supply Chain Intelligence service from International Data Corporation (IDC), worldwide semiconductor revenue is expected to reach $800 billion in 2025, growing 17.6% year-over-year from $680 billion in 2024. This follows a strong rebound in 2024, when revenue grew by 22.4% year-over-year.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
09/05/2025 | Andy Shaughnessy, I-Connect007It’s almost fall here in Atlanta, and that means that the temperature is finally dropping. And it quit raining! It’s been raining since March, and I’m so over it, as the social influencers say. Last night we grilled out on the deck, and it wasn’t hot, and we didn’t get rained on. Life is good. It was a busy week in the industry. In this installment of my must-reads, we say goodbye to Walt Custer, the man who made PCB data points interesting for the rest of us.
Walt Custer: Making Data Interesting
09/03/2025 | Andy Shaughnessy, I-Connect007I just learned that IPC Hall of Famer Walt Custer has passed away at 81. I first met Walt about 20 years ago when I started covering the fabrication industry. Right away, he started telling me which companies to watch and which trends to follow. This was in the years following 9/11, and things were still pretty fluid.