Robots to Handle Kitchen Chores
December 19, 2018 | DTUEstimated reading time: 2 minutes

A young DTU researcher has brought us one step closer to a kitchen robot that can help with cooking.
Who has not dreamed of getting help with kitchen chores such as peeling carrots, chopping onions, or putting things away? PhD student Adrian Llopart Maurin has set himself the task of solving this challenge with the help of robot technology. In collaboration with the Korean University KAIST, he is developing a humanoid service robot.
While we should not expect to find kitchen helper robots under this year’s Christmas tree, they may become a familiar sight in the next couple of years. Robotics and AI research are moving at incredible speed driven in particular by the knowledge gleaned from self-driving cars, enabling robots to recognize things in their surroundings—e.g. other road users, traffic signs, and trees.
This knowledge is relatively simple to adapt, so instead of traffic-related data, the robot is fed images of kitchen service such as cups, bowls, and glasses, enabling it to recognize these items and respond accordingly.
Adrian Llopart Maurin has conducted research into robots—partly at DTU Electrical Engineering—and partly at the internationally recognized Korean Technical University, KAIST. His research is based on the Mybot humanoid service robot developed at KAIST. During the project, the robot was given a new head and its name changed to Siambot.
“A robot such as Mybot or Siambot consists of a multitude of systems, each of which is coded to perform a single task—e.g. to see and recognize a cup, to lift an arm, to take hold of something, or to move from one place to another. I’ve been working on integrating the various systems and in this way enable the robot to perform simple tasks,” says Adrian Llopart Maurin.
3D Vision
The robot’s eyes consist of two cameras—one films in standard colour and 2D, while the other films in depth using a points map to reproduce objects in 3D. By feeding the robot with a wide range of images, Adrian has enabled it to recognize a cup, for example—irrespective of type or colour—and determine how best to grip the cup in order to pick it up.
“One of the specific tasks I gave the robot was to put a glass of wine on table (A). The only information the robot got in advance was that on the next table—table (B)—there was a wine bottle and a glass. The robot then understood that it had to move to table (B), take the wine bottle—and on the basis of a calculation of the bottle’s height and the location of the glass on the table—pour wine into the glass and place the glass on table (A),” explains Adrian Llopart Maurin.
The future aim is to create a robot that can help serve at restaurants or assist with kitchen tasks in the home. Who knows—perhaps it will actually be able to create an entire meal on its own?
“Several companies are in the process of developing this type of robot and there is definitely a huge market for those that succeed. The final breakthrough is expected over the next few years when we will see robots capable of understanding voice messages and carrying out the cooking tasks they are assigned,” says Ole Ravn, head of DTU’s work with automation.
Suggested Items
Vuzix Acquires Advanced Waveguide R&D Facility in Silicon Valley to Strengthen Partnerships with Big Tech OEMs/ODMs
04/29/2025 | PRNewswireVuzix Corporation, a leading supplier of smart glasses, waveguides, and Augmented Reality (AR) technologies, today announced the acquisition of an advanced waveguide R&D facility in Milpitas, California.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
03/07/2025 | Andy Shaughnessy, I-Connect007It’s been a busy week. My must-reads include articles and news items on global trends and challenges, groundbreaking technology, the hunt for the elusive young PCB designers, and some personnel changes. We also have a great column on the value of following up and keeping promises. We’re all guilty of “dropping the ball” from time to time, aren’t we?
IMAPS’ Annual Conference Opener in Phoenix ‘Blew My Mind’
03/05/2025 | Marcy LaRont, I-Connect007It was a cool and sunny morning as I headed out to the IMAPS Device Packaging Conference 2025 in Arizona early Tuesday, which featured two compelling keynote speakers, and a day chocked full of technical sessions. IMAPS 2025 also hosted a sold-out exhibit hall with 65 exhibitors from IBM and Heraeus to Cadence and KYZEN, to name just a few. The technology and packaging discussions at this conference blew my mind last year, and it is clear this year would be no different.
TASMIT Launches Large Glass Substrate Inspection System for Advanced Semiconductor Packaging
03/04/2025 | ACCESSWIRETASMIT Inc. has launched a new inspection system for glass substrates as part of its INSPECTRA® series of semiconductor wafer visual inspection systems, which has gained attention for its high efficiency in advanced semiconductor manufacturing.