New Cutting-Edge Technology Bridges the Digital Divide
December 19, 2018 | CORDISEstimated reading time: 2 minutes

We use the Internet in nearly every aspect of our daily lives—when making video calls, telecommuting, playing online interactive games, interacting on social networks or using smart TVs. All these uses require ever-increasing amounts of data to be transmitted. However, at the current rate of increase, today’s state-of-the-art networks will soon be unable to support demand.
Existing wireless networks operating at microwave frequencies are already congested, with a bandwidth too narrow to support multigigabit data rates. Optical fibre networks, on the other hand, cannot be deployed in some rural and suburban areas due to high costs and geographical considerations. These two challenges limit internet access for many parts of society, reinforcing the digital divide.
The EU-funded project TWEETHER sought to bridge this divide by introducing a new wireless network concept that harnesses millimetre wave technology. To do this, a team of scientists and engineers from Germany, Spain, France and the United Kingdom developed a novel wireless W-band (92-95 GHz) transceiver. Less than three years since the project began, the TWEETHER team has succeeded in demonstrating the first-ever real-world point-to-multipoint data transmission within the millimetre wave spectrum.
Lying between the microwaves and the infrared waves, millimetre waves are extremely high-frequency electromagnetic waves in the 30 to 300 GHz frequency (10 to 1 mm wavelength) range. Thanks to their potential to meet the growing demand for bandwidth and high-speed communication needs, millimetre waves are being used to test 5G wireless broadband technology.
High-Speed Data Transmission Demonstrated
The project’s cutting-edge technology was tested at project partner Polytechnic University of Valencia in Spain. The field test showed that up to 10 Gbit of data could be transmitted per second over a large area to base stations for mobile networks or broadband fixed wireless access networks.
“The development of European technology at millimetre wave aims to solve two major challenges of modern communications,” said Prof. Claudio Paoloni of project coordinator Lancaster University in a news release posted on the ‘EurekAlert!’ website. According to Prof. Paoloni, the first challenge involves finding a way to “wirelessly transmit to and from a grid of new 5G small cells networks,” and the second concerns the digital divide affecting millions of houses with no broadband access in areas where optical fibre networks can’t be deployed.
The project team’s achievement paves the way for lower cost and higher flexibility in data transmission than can be gained with optical fibre. Furthermore, it makes broadband delivery possible in areas where fibre can’t be deployed because of high costs.
The new TWEETHER (Traveling Wave Tube based W-band Wireless Networks with High Data Rate, Distribution, Spectrum and Energy Efficiency) technology will be used in 5G networks and is open to telecommunication operators and vendors interested in the technology.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Circus SE Set for High-Volume Market Entry in the Defense Sector
10/17/2025 | BUSINESS WIRECircus SE a global technology leader in AI robotics for autonomous nutrition systems and troop supply, is expanding its global production network as part of its high-volume market entry into the defense sector.
China Expands Rare Earth Export Restrictions, Tightening Grip on Global Supply Chains
10/16/2025 | I-Connect007 Editorial TeamChina sharply expanded its rare earth export restrictions on Oct. 9, adding additional elements and refining technologies to its control list while imposing stricter rules on foreign users in the defense and semiconductor industries.
SAMI Advanced Electronics Company Launches “Remal” Computer Manufacturing Project in Partnership with HP and Foxconn
10/15/2025 | SAMI-AECSAMI Advanced Electronics Company (SAMI-AEC), a wholly owned subsidiary of Saudi Arabian Military Industries (SAMI), proudly announced the launch of the “Remal” project for computer manufacturing, in strategic partnership with HP and Foxconn.
The Right Approach: Electro-Tek—A Williams Family Legacy, Part 1
10/15/2025 | Steve Williams -- Column: The Right ApproachThere is no bronze bust in the lobby or portrait in the conference room of Electro-Tek's founder—my Dad, Charles “Chuck” Williams—so with the facility closing last year after 56 years, I feel it is time to tell the story. Chuck Williams founded Electro-Tek in 1968 in our basement, eventually moving into the second floor of an old 1913 building in downtown Milwaukee that is still standing (the first of three eventual facilities).
LPKF Joins productronica’s 50th Anniversary, Showcasing Laser Technology for Electronics Manufacturing
10/10/2025 | LPKF Laser & ElectronicsLPKF Laser & Electronics invites visitors to productronica 2025 in Munich from November 18 to 21. At booth 305 in hall B2, the company will present its portfolio of modern laser technologies for the electronics industry live – from prototyping systems and high-performance depaneling to laser plastic welding for electronic housings and thin glass processing for advanced packaging.