New Progress Report on Graphene Oxide for Optical Biosensing in Advanced Materials
December 19, 2018 | ICN2Estimated reading time: 1 minute

The year was 2012. The setting was the Graphene 2012 conference in Brussels. Prof. Mildred S. Dresselhaus, “the queen of carbon science,” urged those present to take care with what they were calling ‘grapheme.’ It turns out that what scientists were working with in different laboratories around the world was in fact a whole family of materials with a range of different characteristics. This call to attention inspired efforts to develop a specific nomenclature and classification for 2D carbon materials, based mainly on their degree of oxidation, lateral size and number of layers. And because naming something has the power to focus and redirect our thinking, a whole body of research emerged exploring these and other features in different contexts.
This overview by Prof. Eden Morales-Narváez, formerly of the ICN2 and now head of the Biophotonic Nanosensors Laboratory at Center for Research in Optics (Mexico), and ICREA Prof. Arben Merkoçi, leader of the ICN2 NanoBioelectronics and Biosensors Group, focuses on how recent advances in our understanding and ability to control these features in graphene oxide have impacted on this material’s overall performance as an optical biosensing platform. It also covers the new applications enabled in label-free optical techniques and the integration of GO-based biosensors into the solid phase, developments barely considered just six years ago when their first review was published.
Indeed, "Graphene Oxide as an Optical Biosensing Platform: a Progress Report (2018)" paints an attractive picture of a future where graphene oxide-based sensors will contribute to more efficient devices with simplified manufacturing processes and greater applicability. Wearable technologies, flexible devices, super sensitive biosensors that can be connected up to mobile phones and used in situ and in real time to detect even tiny concentrations of analyte. It also identifies key areas where international research has yet to venture very far, for instance in light-activated or light-based therapy and diagnostics, while also pointing to the combination of graphene derivatives with other 2D materials like molybdenum disulfide, hexagonal boron nitride and black phosphorus as a little-tapped source of breakthroughs in optical biosensing.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.