Controllable Fast, Tiny Magnetic Bits
January 4, 2019 | MITEstimated reading time: 9 minutes
These skyrmions are as small as 10 nanometers, which is the current world record for room temperature skyrmions. The researchers demonstrated current driven domain wall motion of 1.3 kilometers per second, using a mechanism that can also be used to move skyrmions, which also sets a new world record.
Except for the synchrotron work, all the research was done at MIT. “We grow the materials, do the fabrication and characterize the materials here at MIT,” Caretta says.
Magnetic Modeling
These skyrmions are one type of spin configuration of electron spins in these materials, while domain walls are another. Domain walls are the boundary between domains of opposing spin orientation. In the field of spintronics, these configurations are known as solitons, or spin textures. Since skyrmions are a fundamental property of materials, mathematical characterization of their energy of formation and motion involves a complex set of equations incorporating their circular size, spin angular momentum, orbital angular momentum, electronic charge, magnetic strength, layer thickness, and several special physics terms that capture the energy of interactions between neighboring spins and neighboring layers, such as the exchange interaction.
One of these interactions, which is called the Dzyaloshinskii-Moriya interaction (DMI), is of special significance to forming skyrmions and arises from the interplay between electrons in the platinum layer and the magnetic layer. In the Dzyaloshinskii-Moriya interaction, spins align perpendicular to each other, which stabilizes the skyrmion, Lemesh says. The DMI interaction allows for these skyrmions to be topological, giving rise to fascinating physics phenomena, making them stable, and allowing for them to be moved with a current.
“The platinum itself is what provides what’s called a spin current which is what drives the spin textures into motion,” Caretta says. “The spin current provides a torque on the magnetization of the ferro or ferrimagnet adjacent to it, and this torque is what ultimately causes the motion of the spin texture. We’re basically using simple materials to realize complicated phenomena at interfaces.”
In both papers, the researchers performed a mix of micromagnetic and atomistic spin calculations to determine the energy required to form skyrmions and to move them.
“It turns out that by changing the fraction of a magnetic layer, you can change the average magnetic properties of the whole system, so now we don’t need to go to a different material to generate other properties,” Lemesh says. “You can just dilute the magnetic layer with a spacer layer of different thickness, and you will wind up with different magnetic properties, and that gives you an infinite number of opportunities to fabricate your system.”
Precise Control
"Precise control of creating magnetic skyrmions is a central topic of the field,” says Jiadong Zang, an assistant professor of physics at the University of New Hampshire, who was not involved in this research, regarding the Advanced Materials paper. “This work has presented a new way of generating zero field skyrmions via current pulse. This is definitely a solid step towards skyrmion manipulations in nanosecond regime.”
Commenting on the Nature Nanotechnology report, Christopher Marrows, a professor of condensed matter physics at the University of Leeds in the United Kingdom says: “The fact that the skyrmions are so small but can be stabilized at room temperature makes it very significant.”
Marrows, who also was not involved in this research, noted that the Beach group had predicted room temperature skyrmions in a Scientific Reports paper earlier this year and said the new results are work of the highest quality. “But they made the prediction and real life does not always live up to theoretical expectations, so they deserve all the credit for this breakthrough,” Marrows says.
Zang, commenting on the Nature Nanotechnology paper, adds: “A bottleneck of skyrmion study is to reach a size of smaller than 20 nanometers [the size of state-of-art memory unit], and drive its motion with speed beyond one kilometer per second. Both challenges have been tackled in this seminal work.
“A key innovation is to use ferrimagnet, instead of commonly used ferromagnet, to host skyrmions,” Zang says. “This work greatly stimulates the design of skyrmion-based memory and logic devices. This is definitely a star paper in the skyrmion field.”
Page 2 of 3
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.