Rapid Cooling Reveals Superpowers
January 8, 2019 | RIKENEstimated reading time: 4 minutes

RIKEN researchers have developed a brand-new method for inducing superconductivity, by very rapidly cooling a target material using electrical pulses and effectively bypassing other states that might be more stable. RIKEN’s Hiroshi Oike says it will vastly broaden the range of known superconducting materials.
In most conductors, the natural kinetic motion of warm atoms somewhat disrupts the flow of electrons (electricity), some of which are lost as heat. However, when a superconductor’s atoms are very cold, they stop vibrating around as vigorously, and electrons are free to zoom along the material without resistance because of quantum mechanical effects. Because of this, superconductors don’t suffer from energy scattering and loss, and they can harness larger electric currents.
What Oike and his colleagues from the RIKEN Center for Emergent Matter Science and the University of Tokyo realized is that electron ordering takes time, so reducing the temperature of a potential superconductor extremely fast could circumvent other non-superconducting states that might otherwise take precedence. The group describe it as a “thermal quenching approach” based on the fact that within a time range, a system may be trapped in a local minimum state. In an overview on Oike’s study, Nature compared the idea to plunging hot steel into cold water to harden it, which bypasses small changes that happen during drawn out cooling.
Excitingly, the group found that, in the right conditions, superconductivity does indeed emerge as ‘a metastable state’—the state with the longest lifetime against other excited states—even if more stable competing orders were bypassed during cooling.
Important implications exist if new superconductors are found that operate at higher temperatures than those we already know. Currently, superconducting materials only exhibit this state at very low temperatures—the highest temperate a superconductor is known to operate at is −70°C. Finding higher temperature superconductors could vastly reduce the need for cumbersome cooling apparatus. This change could quickly dovetail into more efficient computing and electrical devices, and MRI machines would be able to finally shed their distinct bulky doughnut shape, which is created by huge liquid cooling systems surrounding superconductors emitting the powerful magnetic fields essential to an MRI’s function.
An Energetic Balancing Act
Since the discovery of superconductivity in 1911, scientists have tweaked superconductors by making small changes to their composition or increasing physical/chemical pressure, both as a means of ensuring that the superconducting state is the lowest energy state. They do this because it’s fundamental to thermodynamics that a system will eventually settle into the state with the lowest energy. According to Oike, the problem for many potential superconductors previously had been the fine energetic balance between a superconducting state and its alternatives.
He explains that localized particles have greater kinetic energy, but smaller repulsion energy, than delocalized ones, and so localized and delocalized states are in very close energetic competition. “Electrons at low temperatures are often localized to minimize the energy cost of their mutual repulsion,” Oike says. “But electrons in a superconducting state are delocalized and consequently pay a larger energetic cost because a delocalized electron has more chance to get close to, and repel, other electrons.” As a result, for many materials another state takes precedence over a superconducting state.
Quick Cooling Very Effectively Bypasses Other States
To prove experimentally that their quick cooling idea could effectively line-jump other states, Oike’s team selected a non-superconducting material called iridium ditelluride. The electrons in iridium telluride are delocalized at high temperatures, but usually form an ordered state when slowly cooled. It’s also known from previous research that this material has a superconducting state ‘nearby’ its natural state, which makes it the perfect choice for this experiment.
To cool their iridium ditelluride, the team placed the sample on a cold substrate and then passed rapid pulses of electrical current through it. This, in effect, temporarily turns the sample into an electrical heater, and, every time the current is switched off, the surroundings get warmer but the iridium ditelluride gets much colder.
“In a conventional heater in air, the element cools down by several degrees per minute when it is switched off,” says Oike. “But when the size of the heater is very small and it is attached to a cold substrate, the cooling rate can exceed 10,000,000 degrees per second.” In less than 10 microseconds the pulses heated the metal to more than 27°C before cooling it to −269°C.
The RIKEN team confirmed the creation of a superconducting state by measuring a zero electrical-resistance in their sample at its coolest, and they observed that this non-resistant state remained intact for a week.
Potential Superconducting Circuits
“I think that the most exciting message from our work is that a non-superconducting material such as iridium ditelluride has the potential to exhibit reversible and non-volatile switching to a superconducting state,” says Oike. “Our scheme means that materials that have been categorized as non-superconducting now have a fresh chance to yield metastable superconducting behavior.”
Achieving this switching phenomenon electrically means that it could also potentially be applied to devices such as superconducting circuits, which are seen as one possible route to quantum computers. And the team is not stopping here: they next hope to investigate other ways of achieving this approach to creating a superconductor.
“Although we used electric current in this study, the temperature of materials can also be controlled with high-intensity light,” says Oike. “When we control the local temperature of a non-superconducting material with focused light, we expect that the illuminated area turns to a superconducting state, thus affording us the ability to write a superconducting area in a non-superconducting material.”
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Advint Incorporated Brings Artificial Intelligence to Electroplating Training
09/11/2025 | Advint IncorporatedAdvint Incorporated is introducing a new dimension to its electroplating training programs: the integration of Artificial Intelligence (AI). This initiative reflects the company’s commitment to providing PCB fabricators and manufacturers in the USA and Canada with training that is practical, forward-looking, and directly relevant to today’s production challenges.
Elementary Mr. Watson: Running the Signal Gauntlet
09/11/2025 | John Watson -- Column: Elementary, Mr. WatsonIf you’ve ever run a military obstacle course, you know it’s less “fun fitness challenge” and more “how can we inflict as much pain in the shortest time possible?” You start fresh—chest out, lungs full of confidence, thinking you might even look good doing this—and 10 seconds later, you’re questioning all your life choices.
It's Only Common Sense: The Evolution of Prospecting
09/08/2025 | Dan Beaulieu -- Column: It's Only Common SenseCold calling isn’t dead. I don’t care what the LinkedIn gurus or the TikTok “sales coaches” say. Picking up the phone and talking to another human being is still one of the fastest ways to grow your business. But (and it’s a big but), cold calling is different now. The world and buyers have changed. You can’t smile-and-dial like it’s 1987, reading the same tired script, hoping the gatekeeper is too bored to block you. If you’re still cold calling the old way—no research, relationship, or relevance—you’re showing up to a gunfight with a butter knife.
Elementary Mr. Watson: Routing Hunger Games—May the Traces Be Ever in Your Favor
08/26/2025 | John Watson -- Column: Elementary, Mr. WatsonI’d like to share a harsh truth, and I say this as a friend: PCB designers are often their own worst enemy. It’s rarely the complexity of the circuit, the last-minute changes from mechanical, the limited enclosure space, or the ever-expanding list of design rules that send projects to the dust heap of failed boards. More often, it's our own decisions, made too quickly and narrowly, and with too little foresight, that sabotage an otherwise good design.
It’s Only Common Sense: 20 Lessons in 20 Years—A Career in Common Sense
08/25/2025 | Dan Beaulieu -- Column: It's Only Common SenseIt’s been 20 years and 1,000 columns since I published my first monthly edition called “It’s Only Common Sense” on Sept. 5, 2005. I had only written 10 columns when I realized I couldn’t be confined to once a month. I simply had too much to say. So, on July 31, 2006, I started writing once a week, and let me tell you, that’s a lot of Mondays spent thinking, listening, watching, and writing about this wild, brutal, and beautiful industry we call the printed circuit board business.