An X-Ray Analysis Reveals the Charging Mechanism of a Promising Electrode Material
January 8, 2019 | A*STAREstimated reading time: 2 minutes

An experimental technique developed by A*STAR researchers has been used to track the chemical and structural changes in an electrode as a battery discharges. The X-ray-based technique should help to improve the performance of materials in next-generation batteries.
Lithium-ion batteries are widely used in our daily lives, for example in mobile devices and electric vehicles. They store and release energy by shuttling lithium ions between two electrodes (see image). But the amount of energy that these electrodes can store, and the speed at which the batteries charge or discharge, is still relatively limited. Moreover, repeated use can cause the electrodes to expand and contract, degrading their performance over time.
Electrodes containing titanium dioxide nanotubes organized in a form known as the bronze phase could help to overcome these restrictions because the material has a high theoretical charge capacity and its volume changes little during operation. However, its charging mechanism is not fully understood, due to the limitations of analytical tools that can directly probe the surface charging process.
Yonghua Du of the A*STAR Institute of Chemical and Engineering Sciences, and Xiaodong Chen’s group at Nanyang Technological University have now tackled this problem by using the Singapore Synchrotron Light Source to perform X-ray absorption spectroscopy measurements on the titanium dioxide electrodes during operation.
They discovered that the average charge of the material’s titanium atoms, known as their valence state, dropped steadily from roughly four to three as the material accumulated lithium ions during discharge. The experiments also revealed how the material’s crystal structure expanded as lithium ions accumulated in the electrode. Since titanium atoms in a low-valence state are slightly larger than ones in a higher valence state, this further distorted the crystal structure. “A phase transition occurs during charging and discharging,” explains Du.
Different mechanisms for charge storage can occur at the electrode’s surface, which the experiments quantified for the first time. They showed that most of the battery’s storage capacity depends on the change in titanium’s valence state. Further tests demonstrated that hollow titanium dioxide nanotubes could store more charge than nanowires of the same material.
As the discharge rate increased, a greater proportion of lithium ions were stored at the electrode’s surface, rather than deep within its structure. This reduced the change in the average valence state of titanium, which ultimately lowered the electrode’s energy capacity.
This analysis of how the lithium-ion batteries work will help to guide researchers as they design electrode nanostructures to improve lithium-ion storage and mobility. Du notes that their X-ray absorption spectroscopy technique could be also applied to other electrode materials.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.