Batteries Predicted to Become the Cheapest Option for Storing Electricity
January 10, 2019 | Imperial College LondonEstimated reading time: 3 minutes

By 2050, batteries based on lithium-ion will be the cheapest way to store electricity, such as from solar or wind farms, according to a new study.
The new research calculates the cost of storing energy with different technologies, including large-scale batteries and pumped-storage hydroelectricity, and predicts those costs into the future.
Based on this model, battery technologies based on lithium-ion are predicted to be the cheapest way of storing energy for most applications, such as making sure energy grids do not suffer large fluctuations and allowing consumers to manage their bills.
These applications are particularly important in a world that relies more heavily on energy sources that may be intermittent—such as wind or solar power.
The new study, published today in Joule by researchers at Imperial College London, could help industry and policymakers decide where to invest research and capital to make the best use of energy storage technologies.
While previous studies of energy storage costs primarily focused on the investment costs only, the new study determines the ‘levelized cost of storage’—the full costs of storing energy including investment, operation and charging cost, as well as technology lifetime, efficiency and performance degradation.
Lead researcher Oliver Schmidt, from the Grantham Institute and the Centre for Environmental Policy at Imperial, said: “Our model is the first to project full energy storage costs into the future, allowing predictions of which technology will be most competitive in a particular application at a particular time.”
Why Lithium-Ion Wins
The model shows that at present, the cheapest energy storage mechanism is pumped-storage hydroelectricity, where water is pumped to a higher elevation with spare energy, then released to harvest the energy when needed.
However, as time progresses, pumped-storage hydroelectricity costs do not decrease, whereas lithium-ion battery costs come down, making them the cheapest options for most applications from 2030.
Hydrogen storage and flywheel technologies also become the cheapest for certain applications, such as when the stored energy needs to be discharged over a long time period or when it must be discharged very frequently, but lithium-ion technologies are cheapest for the majority of applications.
Schmidt explained: “Our projections show that lithium-ion technologies will see a rapid decline in costs over the next couple of decades. This is driven mainly by the fact that lithium-ion is manufactured at scale. The resulting reduction in initial investment costs is more significant than for other newer technologies such as flow batteries and flywheels, potentially outcompeting any performance advantages of these newer technologies.”
Optimal Energy Storage Technologies Over Time
Changing technology dominance for varying energy storage requirements from 2015-2030. Circled numbers represent the requirements of the 12 energy storage applications. Colours represent technologies with lowest LCOS.
Following in the Footsteps of Silicon Solar Panels
Dr Iain Staffell, senior author on the paper from the Centre from Environmental Policy, said: “We have found that lithium-ion batteries are following in the footsteps of crystalline silicon solar panels. First-generation solar cells were high performance but very expensive, so cheaper second- and third-generation designs were developed to supersede them. However, sheer economies of scale mean these first-generation panels now cannot be beaten on price.
“Similarly, lithium-ion batteries were once expensive and only suited to niche applications, but they are now being manufactured in such volumes that their costs are coming down much faster than the competing storage technologies.”
Schmidt added: “This doesn’t mean that these other technologies should be abandoned, but they have to perhaps focus on performance and efficiency, making them the best they can be before being deployed at a larger scale.”
The team have made their model open access, allowing consumers, academics, industry and policymakers to run their own simulations with the data for specific applications.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/13/2025 | Marcy LaRont, I-Connect007Today is Friday the 13th, and in much of Western folklore, this is a day when bad luck is lurking. But while Friday the 13th may top Western superstition charts, the global calendar is sprinkled with its own unlucky legends. In Spain and Greece, the bad juju lands on Tuesday the 13th—a day linked to Mars, the god of war, and naturally, chaos. In Italy, it’s Friday the 17th that is feared, thanks to the Roman numeral XVII, which can be rearranged to spell VIXI—Latin for “I have lived” (a poetic way of saying you’re dead).
Roll-to-Roll Technologies for Flexible Devices Set to Grow at 11.5% CAGR
06/11/2025 | GlobeNewswireAccording to the latest study from BCC Research, the “Global Markets for Roll-to-Roll Technologies for Flexible Devices” is expected to reach $69.8 billion by the end of 2029 at a compound annual growth rate (CAGR) of 11.5% from 2024 to 2029.
Qualcomm Acquires Autotalks to Boost V2X Deployments
06/06/2025 | Qualcomm IncorporatedQualcomm Incorporated announced that its subsidiary, Qualcomm Technologies, Inc., has completed the acquisition of Autotalks, an industry leader in direct vehicle-to-everything (V2X) communication solutions.
Mycronic’s Global Technologies Acquires Surfx in the US
06/03/2025 | MycronicMycronic’s Global Technologies division has acquired Surfx Technologies, a company headquartered in the US, providing atmospheric plasma solutions for surface treatment, including cleaning and active oxide removal.
Delta Thailand Reinforces 4IR Leadership and Smart Energy Vision at i-Forum 2025
06/02/2025 | Delta ThailandDelta Thailand reaffirmed its role in advancing industrial automation and sustainable innovation at i-Forum 2025. Held on May 9 by the Faculty of Engineering at Kasetsart University in Bangkok, the forum focused on the theme “Leading the 4IR Revolution: Key Lessons from the WEF Global Lighthouse Network.”