Spintronics 'Miracle Material' Put to the Test
January 11, 2019 | University of UtahEstimated reading time: 4 minutes
The next step, which Vardeny and Wang accomplished in their recent work, was to incorporate hybrid perovskite into spintronic devices. The first device is a spintronic light-emitting diode, or LED. The semiconductor in a traditional LED contains electrons and holes—places in atoms where electrons should be, but aren’t. When electrons flow through the diode, they fill the holes and emit light.
Wang says that a spintronic LED works much the same way, but with a magnetic electrode, and with electron holes polarized to accommodate electrons of a certain spin. The LED lit up with circularly polarized electroluminescence, Wang says, showing that the magnetic electrode successfully transferred spin-polarized electrons into the material.
“It’s not self-evident that if you put a semiconductor and a ferromagnet together you get a spin injection,” Vardeny adds. “You have to prove it. And they proved it.”
The second device is a spin valve. Similar devices already exist and are used in devices such as computer hard drives. In a spin valve, an external magnetic field flips the polarity of magnetic materials in the valve between an open, low-resistance state and a closed, high-resistance state.
Wang and Vardeny’s spin valve does more. With hybrid perovskite as the device material, the researchers can inject spin into the device and then cause the spin to precess, or wobble, within the device using magnetic manipulation.
That’s a big deal, the researchers say. “You can develop spintronics that are not only useful for recording information and data storage, but also calculation,” Wang says. “That was an initial goal for the people who started the field of spintronics, and that’s what we are still working on.”
Taken together, these experiments show that perovskite works as a spintronic semiconductor. The ultimate goal of a spin-based transistor is still several steps away, but this study lays important groundwork for the path ahead.
“What we’ve done is to prove that what people thought was possible with perovskite actually happens,” Vardeny says. “That’s a big step.”
This work was funded by the U.S. Department of Energy Office of Science.
Page 2 of 2Suggested Items
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.
Real Time with... IPC APEX EXPO 2025: DuPont Electronics Materials and Innovations
04/23/2025 | Real Time with...IPC APEX EXPODuPont is many things to many markets, but DuPont Electronics Materials is, perhaps, a bit out of the DuPont "norm," developing specialized electronic materials that are particularly focused on challenging areas such as flex circuits, high power PCBs and products that must withstand harsh environments. At IPC APEX EXPO, Marcy LaRont sat down with Shannon Dugan from DuPont Electronics Materials to discuss some big news. They are being spun off into an independent entity with a new CEO having just been announced as the show wrapped.