Technique Identifies Electricity-Producing Bacteria
January 14, 2019 | MITEstimated reading time: 4 minutes
In their new study, the researchers used their microfluidic setup to compare various strains of bacteria, each with a different, known electrochemical activity. The strains included a “wild-type” or natural strain of bacteria that actively produces electricity in microbial fuel cells, and several strains that the researchers had genetically engineered. In general, the team aimed to see whether there was a correlation between a bacteria’s electrical ability and how it behaves in a microfluidic device under a dielectrophoretic force.
The team flowed very small, microliter samples of each bacterial strain through the hourglass-shaped microfluidic channel and slowly amped up the voltage across the channel, one volt per second, from 0 to 80 volts. Through an imaging technique known as particle image velocimetry, they observed that the resulting electric field propelled bacterial cells through the channel until they approached the pinched section, where the much stronger field acted to push back on the bacteria via dielectrophoresis and trap them in place.
Some bacteria were trapped at lower applied voltages, and others at higher voltages. Wang took note of the “trapping voltage” for each bacterial cell, measured their cell sizes, and then used a computer simulation to calculate a cell’s polarizability — how easy it is for a cell to form electric dipoles in response to an external electric field.
From her calculations, Wang discovered that bacteria that were more electrochemically active tended to have a higher polarizability. She observed this correlation across all species of bacteria that the group tested.
“We have the necessary evidence to see that there’s a strong correlation between polarizability and electrochemical activity,” Wang says. “In fact, polarizability might be something we could use as a proxy to select microorganisms with high electrochemical activity.”
Wang says that, at least for the strains they measured, researchers can gauge their electricity production by measuring their polarizability — something that the group can easily, efficiently, and nondestructively track using their microfluidic technique.
Collaborators on the team are currently using the method to test new strains of bacteria that have recently been identified as potential electricity producers.
“If the same trend of correlation stands for those newer strains, then this technique can have a broader application, in clean energy generation, bioremediation, and biofuels production,” Wang says.
This research was supported in part by the National Science Foundation, and the Institute for Collaborative Biotechnologies, through a grant from the U.S. Army.
Page 2 of 2Suggested Items
Siemens Strengthens Leadership in Industrial Software and AI with Acquisition of Altair Engineering
10/31/2024 | SiemensSiemens has signed an agreement to acquire Altair Engineering Inc., a leading provider of software in the industrial simulation and analysis market.
Duality AI Contracts with NASA JPL for Phase II of DARPA RACER Program
09/13/2024 | BUSINESS WIREDuality AI, the company behind Falcon, a digital twin simulation platform, today announced an agreement with NASA’s Jet Propulsion Laboratory (NASA JPL) in Pasadena to continue its work on Defense Advanced Research Projects Agency’s (DARPA’s) Robotic Autonomy in Complex Environments with Resiliency program (RACER).
Electronic Design Automation Market Valuation is Poised to Reach $35.3 Billion By 2032
08/08/2024 | Globe NewswireThe global electronic design automation market is projected to hit the market valuation of US$35.3 billion by 2032 from $15.8 billion in 2023 and at a CAGR of 9.75% during the forecast period 2024–2032.
CACI Awarded $319 Million Task Order to Provide Intelligence Systems Expertise to the U.S. Army
08/05/2024 | CAC, Inc.CACI International Inc announced that it has been awarded a five-year task order valued at up to $319 million to provide intelligence systems expertise to the U.S. Army, Communications-Electronics Command (CECOM), Software Engineering Center (SEC), Electronic Warfare and Sensors Directorate (IEWSD), Army Reprogramming Analysis Team-Program Office (ARAT-PO).
Ansys 2024 R2 Delivers Multiphysics Innovation Across Industries and Engineering Domains
07/29/2024 | ANSYSAnsys 2024 R2 redefines the boundaries of product design by enabling customers to move beyond the limits of single-physics simulation to gain multidimensional insight into the performance of today’s complex products. R2 enhancements focused on accelerating run times, scaling capacity, enabling digital transformation, and providing hardware flexibility are making Ansys multiphysics simulations more accessible and powerful than ever before.