Next Generation Photonic Memory Devices are 'Light-Written,' Ultrafast and Energy Efficient
January 14, 2019 | Eindhoven University of TechnologyEstimated reading time: 3 minutes

Light is the most energy-efficient way of moving information. Yet, light shows one big limitation: it is difficult to store. As a matter of fact, data centers rely primarily on magnetic hard drives. However, in these hard drives, information is transferred at an energy cost that is nowadays exploding.
Image Caption: All-optical switching. Data is stored in the form of ‘bits’, which contains digital 0 (North Poles down) or 1 (North Poles up). Data writing is achieved by ‘switching’ the direction of the poles via the application of short laser pulses (in red).
Researchers of the Institute of Photonic Integration of the Eindhoven University of Technology (TU/e) have developed a ‘hybrid technology’ which shows the advantages of both light and magnetic hard drives. Ultra-short (femtosecond) light pulses allows data to be directly written in a magnetic memory in a fast and highly energy-efficient way. Moreover, as soon as the information is written (and stored), it moves forward leaving space to empty memory domains to be filled in with new data. This research, published in Nature Communications, promises to revolutionize the process of data storage in future photonic integrated circuits.
Data are stored in hard drives in the form of ‘bits’, tiny magnetic domains with a North and a South pole. The direction of these poles (‘magnetization’), determines whether the bits contain a digital 0 or a 1. Writing the data is achieved by ‘switching’ the direction of the magnetization of the associated bits.
Conventionally, the switching occurs when an external magnetic field is applied, which would force the direction of the poles either up (1) or down (0). Alternatively, switching can be achieved via the application of a short (femtosecond) laser pulse, which is called all-optical switching, and results in a more efficient and much faster storage of data.
Mark Lalieu, PhD candidate at the Applied Physics Department of TU/e: ‘All-optical switching for data storage has been known for about a decade. When all-optical switching was first observed in ferromagnetic materials - amongst the most promising materials for magnetic memory devices - this research field gained a great boost’. However, the switching of the magnetization in these materials requires multiple laser pulses and, thus, long data writing times.
Storing Data a Thousand Times Faster
Lalieu, under the guidance of Reinoud Lavrijsen and Bert Koopmans, was able to achieve all-optical switching in synthetic ferrimagnets—a material system highly suitable for spintronic data applications—using single femtosecond laser pulses, thus exploiting the high velocity of data writing and reduced energy consumption.
So how does all-optical switching compare to modern magnetic storage technologies? Lalieu: “The switching of the magnetization direction using the single-pulse all-optical switching is in the order of picoseconds, which is about a 100 to 1000 times faster than what is possible with today’s technology. Moreover, as the optical information is stored in magnetic bits without the need of energy-costly electronics, it holds enormous potential for future use in photonic integrated circuits.”
'On-the-Fly' Data Writing
On-the-fly data writing in racetrack memory devices. The magnetic bits (1’s and 0’s) are written by laser pulses (red pulses, left side), and data is transported along the racetrack towards the other side (black arrows). In the future, data might be also read-out optically (red pulses, right side).
In addition, Lalieu integrated all-optical switching with the so-called racetrack memory—a magnetic wire through which the data, in the form of magnetic bits, is efficiently transported using an electrical current. In this system, magnetic bits are continuously written using light, and immediately transported along the wire by the electrical current, leaving space to empty magnetic bits and, thus, new data to be stored.
Koopmans: “This ‘on-the-fly’ copying of information between light and magnetic racetracks, without any intermediate electronic steps, is like jumping out of a moving high-speed train to another one. From a ‘photonic Thalys’ to a ‘magnetic ICE’, without any intermediate stops. You will understand the enormous increase in speed and reduction in energy consumption that can be achieved in this way."
What’s Next?
This research was performed on micrometric wires. In the future, smaller devices in the nanometer scale should be designed for better integration on chips. In addition, working towards the final integration of the photonic memory device, the Physics of Nanostructure group is currently also busy with the investigation on the read-out of the (magnetic) data, which can be done all-optically as well.
Suggested Items
Keysight EDA, Intel Foundry Collaborate on EMIB-T Silicon Bridge Technology for Next-Generation AI and Data Center Solutions
04/30/2025 | BUSINESS WIREKeysight Technologies, Inc. announced a collaboration with Intel Foundry to support Embedded Multi-die Interconnect Bridge-T (EMIB-T) technology, a cutting-edge innovation aimed at improving high-performance packaging solutions for artificial intelligence (AI) and data center markets in addition to the support of Intel 18A process node.
Machine Vision: MVTec Expands Deep Learning Portfolio with New Versions of its Deep Learning Tool
04/29/2025 | MVTec Software GmbHThe machine vision industry is gaining significant momentum by using deep learning, a subset of artificial intelligence, which allows for the automation of entirely new applications and improved results.
Airbus Built Forest Monitoring Satellite Biomass Successfully Launched
04/28/2025 | AirbusThe Airbus built forest monitoring satellite Biomass has been successfully launched into orbit. A European Space Agency (ESA) flagship mission, Biomass will use its revolutionary P-band synthetic aperture radar instrument to measure forest biomass to assess terrestrial carbon stocks and fluxes to enable scientists to better understand the carbon cycle and its effects on climate change.
Asia/Pacific AI Spending to Reach $175 Billion by 2028, Driven by GenAI Boom
04/25/2025 | IDCAccording to the IDC Worldwide AI and Generative AI Spending Guide, the Asia/Pacific region, including China and Japan, is experiencing unprecedented growth in Artificial intelligence (AI) and generative AI (GenAI) investments, spanning software, services, and hardware designed for AI-driven systems.
It’s Only Common Sense: Selling to Engineers
04/28/2025 | Dan Beaulieu -- Column: It's Only Common SenseSelling to engineers is an art and a science. It requires a tailored approach that respects their mindset and professional priorities, provides data, demonstrates expertise, and solves problems. Here’s how to master the art of selling to engineers.