New Scale for Electronegativity
January 15, 2019 | CHALMERS UNIVERSITY OF TECHNOLOGYEstimated reading time: 3 minutes
Electronegativity is one of the most well-known and used models for explaining why chemical reactions occur. Now, electronegativity is redefined in a new, more comprehensive scale, published in the Journal of the American Chemical Society. Behind the study is Martin Rahm, assistant professor in Physical Chemistry at Chalmers along with one Nobel laureate.
The theory of electronegativity forms an important basis for understanding why the elements react with each other to form different types of materials with different properties. It is a central concept used daily by chemists and material researchers all over the world. The concept itself originates from the Swedish chemist Jöns Jacob Berzelius’ research in the 19th century, and is commonly taught already at high school level.
Electronegativity describes how strongly different atoms attract electrons. By using electronegativity scales one can predict the approximate charge distribution in different molecules and materials, without quantum mechanical calculations or spectroscopic studies. In this way, electronegativity offers clues to how atoms and molecules will react when assembled. This is very important for understanding all kinds of materials and for designing new ones.
Martin Rahm, assistant professor in Physical Chemistry at Chalmers together with his colleagues Toby Zeng at Carlton University in Canada and Roald Hoffmann, Nobel laureate in Chemistry 1981 working at Cornell University in the United States, has now developed a whole new electronegativity scale, which they have recently published in the Journal of the American Chemical Society. The new scale has been devised by combining experimental photoionization data for atoms and quantum mechanical calculations for those atoms where experiments are missing.
One motivation for the researchers to develop the new scale was that, although there are already several different definitions of the concept, these have only been applied to cover parts of the periodic table. An additional challenge for chemists is how to explain what it means when electronegativity sometimes fails to predict chemical reactivity or polarity of chemical bonds.
“The old and useful concept now has a new definition. The new definition is the average binding energy of the outermost and weakest bound electrons, the so-called valence electrons. These values have been computed by combining experimental data with quantum mechanical calculations. By and large, most elements are relating to each other in the same way as in earlier scales, but the new definition has also led to some interesting changes where atoms have switched place in the ordering of electronegativity. Some elements have also had their electronegativity calculated for the first time.” says Martin Rahm.
For example, oxygen and chromium have both been moved in the ranking relative to elements closest to them in the periodic table, compared to in earlier scales. The new scale comprises 96 elements, which is a marked increase compared with several previous scales. In this way, electronegativity is available from the first atom, hydrogen or H, to the ninety-sixth, curium or Cm.
An additional advantage of the new definition of electronegativity is that it is part of a framework that can help explain what it means when chemical reactions are not controlled by electronegativity. In such reactions, which can be at odds with conventional chemical rationales, complex interactions between electrons are instead typically governing. What ultimately determines the outcomes of most chemical reactions is changes in the total energy. In their work the authors offer an equation where the total energy of an atom can be described as the sum of two terms, where one term is the electronegativity, and the second describes the average electron interaction. The magnitude and sign of these terms as they change over a reaction reveals the relative importance of electronegativity in governing chemistry.
"This scale is extensive, and I think and hope it will affect research in chemistry and material science. Electronegativity is routinely used in chemical research and with our new scale a number of complicated quantum mechanical calculations can be avoided. The new definition of electronegativity can also be applied for analysing electronic structures calculated quantum mechanically, by making such results more comprehensible." says Martin Rahm.
There are endless ways to combine the atoms in the periodic table and for creating new materials. Electronegativity provides a first important insight into what can be expected from these combinations. Development of numerous novel chemical reactions and materials may speed up due to the new scale. This is because the new definition allows for chemical intuition and understanding that, in turn, can guide both experiments and time-consuming quantum mechanical calculations.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.