Properties of ‘Wonder Material’ Graphene Change in Humid Conditions
January 22, 2019 | Queen Mary University of LondonEstimated reading time: 2 minutes

The ‘wonder material’, which is made from carbon and was discovered in 2004, is hailed for many of its extraordinary characteristics including being stronger than steel, more conductive than copper, light, flexible and transparent.
This study, published in the journal Physical Review B, shows that in bi-layer graphene, which is two sheets of one atom thick carbon stacked together, water seeps between the layers in a humid environment.
The properties of graphene significantly depend on how these carbon layers interact with each other and when water enters in between it can modify the interaction.
The researchers found the water forms an atomically thin layer at 22% relative humidity and separates graphene layers at over 50% relative humidity.
This suggests that layered graphene could exhibit very different properties in a humid place such as Manchester, UK, where average relative humidity is over 80% every month of the year, compared to a dry place such as Tucson, Arizona, where relative humidity is 13% on afternoons in May but rises to 65% on January mornings. So, in Tucson the properties will vary according to the time of the year.
Graphene, both layered and single layer, potentially has a huge number of uses but the results of this study could impact how the material can be used in real-life applications.
Humidity Needs to be Recorded
Lead author Dr Yiwei Sun, from Queen Mary's School of Engineering and Materials Science, said: “The critical points, 22% and 50% relative humidity, are very common conditions in daily life and these points can be easily crossed. Hence, many of the extraordinary properties of graphene could be modified by water in between graphene layers.”
“Some graphene-based devices may function to their full capability in dry places while others may do so in humid places. We suggest all experiments on 2D materials should in future record the relative humidity,” he added.
The researchers suggest humidity is also likely to have an impact on other layered materials such as boron nitride (sheets made of boron and nitrogen) and Molybdenum disulphide (sheets made of molybdenum and sulphur).
The study was carried out because it was known that graphite, a material also made from carbon, loses its excellent lubricating ability in low humidity conditions, such as aboard aeroplanes at high altitude, which was reported during the Second World War, or in outer space, as reported by NASA in the 1970s.
It was believed that the water in between layers of graphite is crucial to its behaviour and now the same effect has been shown to affect layered graphene.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.