We Need Smart Combinations for Next Generation Photonics
January 22, 2019 | University of TwenteEstimated reading time: 2 minutes

Photonics and radio signals join forces for high-speed mobile data communication, like in 5G communications. At the same time, the applications of ‘integrated microwave photonics’ go way beyond telecom. This progress often comes from directions you would not expect in the first place. University of Twente researcher David Marpaung (MESA+ Insitute), for example, works on a combination of light and sound waves, enabling him to design high-quality filters. In a review paper in Nature Photonics, he gives a vision on the next phase of photonic chips, for example in brain-inspired, ‘neuromorphic’ optical computing.
Soon, a single type of photonic chip—a chip that processes light instead of electrons—can’t do the job by its own, is David Marpaung’s expectation. The trend is: find smart combinations of materials and tools, then integrated microwave photonics can really make the difference. His own research is about the combination of light, radio frequency, and acoustic waves. Photonic chips will convert radio signals into light that works at much higher frequencies. In this way, a fast optical link is possible between two base stations for mobile wireless communication. At radio frequencies, however, very precise filtering is possible for selecting the specific part of the crowded radio bands. As soon as the radio signal is converted into light, filtering is more complicated as light, in fact, travels too fast. There, acoustic waves come in: they are capable of slowing down the light, so filters can be designed in the optical domain, that are sufficiently selective. This is called ‘stimulated Brillouin scattering’, for which Marpaung received a Dutch NWO-vidi research grant.
In photonics integration, several materials and tools will come together for the best result, David Marpaung foresees.
Multi-Material
The paper David Marpaung wrote together with experts Jianping Yao of the University of Ottawa and Jose Campany of the University of Valencia, is a broad vision of the future and a plea for finding creative combinations. At this moment, the three main materials for photonics are silicon nitride, indium phosphide and silicon-on-insulator, each of them with its specific advantages. The future is about ‘hybrid systems’ employing combinations of materials and technologies: recent UT work already shows integrating photonics and CMOS electronics, which has the advantage of a mature and very large-scale production technology. Solutions also come from micromechanics. Instead of employing several lasers for one photonics chip, consuming a lot of space and energy, a comb-like structure of ‘microresonators’ can do the job.
Reconfigurable
Thanks to these developments, in which several disciplines meet, microwave photonics can be developed way beyond its origin of telecom and signal processing. Using basic photonics components like ‘Mach-Zehnder interferometers’, enabling logic operations with light, very flexible photonic processors can now be developed, that can be reconfigured for specific applications. Marpaung currently develops such advanced technologies with University of Twente spinoff LioniX. The University of Twente has a cluster of researchers working in photonics, called Applied Nanophotonics, part of the MESA+ Institute.
Spikes
New application areas include optical quantum computing and brain-inspired, ‘neuromorphic’ computing: can we translate the ‘spikes’ in our brain, neurons that ‘fire’, into a photonic processor, thus mimicking how our brain works? Again, combination of technologies and materials will be key to success.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.