Multitasking Graphene Ink Printed Into Tiny Flexible Supercapacitors
January 23, 2019 | CASEstimated reading time: 2 minutes

Researchers have developed an easy way to make complicated arrays of microsupercapacitors that involves screen-printing them out of graphene ink (Energy & Environmental Science, "Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility"). The simplicity and freedom offered by the approach will aid the development of new approaches to electronics and flexible devices.
Although semiconductor components continue to shrink, not all of the parts of modern gadgets are as easy to miniaturise. Capacitors and batteries are particularly challenging given that they are complex and discrete bundles of different materials. Microsupercapacitors, a tiny relative of both of these components, can do similar jobs.
Now, scientists have come up with a screen-printing method using a multi-purpose graphene ink that quickly lays down multiple microsupercapacitors in a variety of shapes and as complicated arrays. The ink combines graphene and carbon black, both of which are conductive, with a polymer binder in a solvent, although the simplicity of the mixture belies the difficulty in finding the right composition.
'Preparing inks with suitable electrical, electrochemical and rheological properties was one of the biggest challenges for printable integrated microsupercapacitors,' emphasises Zhong-Shuai Wu, one of the principal investigators on the project.
Importantly, the ink shows shear-thinning behaviour, like ketchup: as it's applied, the force causes it to lose its viscosity so it flows easily, but as soon as the force is removed, it thickens and keeps its shape.
They applied the graphene ink to a substrate, such as glass or flexible PET plastic, using a patterned screen as a stencil. The resulting pattern includes all of the conductive parts of the device.
'The graphene-based ink can act as the microelectrodes, metal-free current collectors and interconnects, simultaneously,' Wu notes. The ink dries for 12 hours, and then an electrolyte gel is applied and allowed to solidify for a further 12 hours, at which point the device is ready to use.
Because the entire structure of the device can be laid out in one step, very complicated designs can be made with ease. Although a single microsupercapacitor supplies less than one volt, the researchers were able to integrate 130 of them in series, giving an output of over 100 volts.
'Micro-robots and soft actuators based on dielectric elastomer require hundreds and even thousands of volts,' says Wu. 'High voltage operation increases the scope and usefulness of microsupercapacitors,' agrees Francesca Iacopi, head of the integrated nanosystems lab at the University of Technology Sydney in Australia.
The devices are also flexible, if they're printed on a flexible substrate, which should make them compatible with wearable electronics.
'The versatility and low cost of this screen-print approach could be a plus in the wearable systems that are disposable, which is what most of the external health monitoring and other wearable systems are meant to be,' says Iacopi. 'I believe microsupercapacitors on flexible substrates like these would be particularly promising to support the area of wearable systems for health monitoring, for example sensors placed on skin and eyes.'
The investigators are keen use their method to make more complete devices, by including components that can harvest energy and store it in the microsupercapacitors, or put that stored energy to use. They also hope to use new electrolytes to increase the voltage each capacitor can provide, and improve the total energy a device can store.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Printed Electronics Market Size to Top $83.77 Billion by 2034 Driven by IoT Adoption and Flexible Device Demand
09/11/2025 | Globe NewswireThe printed electronics market size has been calculated at U$19,920 million in 2025 and is expected to grow from $23,58 million in 2026 to approximately $83,770 million by 2034.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Flexible PCB Output Expected to Surpass $20 Billion by 2025, with AI Glasses Emerging as a New Growth Driver
08/25/2025 | TPCAThe Taiwan Printed Circuit Association (TPCA) and the Industrial Technology Research Institute (ITRI) released the "2025 Global Flexible PCB Industry Outlook" in August.
Nano Silver Inks Market Forecast Report 2025-2030
08/20/2025 | Globe NewswireThe Nano Silver Inks Market is expected to grow from USD 427.415 million in 2025 to USD 836.160 million in 2030, at a CAGR of 14.36%.
Flexible Circuit Technologies to Host Free Flex Heater Webinar
08/18/2025 | Flexible Circuit TechnologiesGlobal Supplier of flexible circuits, flex design services, and assembly/box-build services, Flexible Circuit Technology will host their latest webinar, "Thermal Precision Meets Flexibility: The Technology Behind Heater Circuits" on Tuesday, August 26th, 2025 at 11 AM EDT.