3D-Printed Soft Mesh Robots Created
January 24, 2019 | NC State UniversityEstimated reading time: 2 minutes

Researchers at North Carolina State University have created 3D-printed flexible mesh structures that can be controlled with applied magnetic fields while floating on water. The structures can grab small objects and carry water droplets, giving them the potential to be useful as soft robots that mimic creatures living on water surfaces or that can serve as tissue scaffolds for cell cultures.
“This research shows capabilities in the emerging field of combining 3D printing and soft robotics,” said Orlin Velev, S. Frank and Doris Culberson Distinguished Professor of Chemical and Biomolecular Engineering at NC State and corresponding author of a paper describing the research.
To create these structures, the researchers made an “ink” from silicone microbeads, bound by liquid silicone and contained in water. The resulting “homocomposite thixotropic paste” resembles common toothpaste, which can easily be squeezed out of a tube but then maintains its shape on your toothbrush without dripping. The researchers used a 3D printer to shape the paste into mesh-like patterns. The patterns are then cured in an oven to create flexible silicone structures that can be controlled—stretched and collapsed—by the application of magnetic fields.
“This self-reinforced paste allows us to create structures that are ultra-soft and flexible,” said Sangchul Roh, an NC State Ph.D. student in Velev’s lab and first author of the paper.
“Embedding of iron carbonyl particles, which are widely available and have a high magnetization, allows us to impart a strong response to magnetic field gradients,” added Joseph Tracy, professor of materials science and engineering and a senior co-investigator on the project.
“The structures are also auxetic, which means that they can expand and contract in all directions,” Velev said. “With 3D printing, we can control the shape before and after the application of the magnetic field.”
The structures’ properties also allow them to be used while floating on water, similar to water striders, or insects that skim or hop across water surfaces.
“Mimicking live tissues in the body is another possible application for these structures,” Roh said.
In the paper, published in a special issue of Advanced Materials Technologies, the researchers showed how they were able to design reconfigurable meshes, a structure that could “grab” a tiny ball of aluminum foil and a structure that can “carry” a single water droplet and then release it on demand through the mesh.
“For now, this is an early stage proof-of-concept for a soft robotic actuator,” Velev said.
Suggested Items
Fresh PCB Concepts: Assembly Challenges with Micro Components and Standard Solder Mask Practices
06/26/2025 | Team NCAB -- Column: Fresh PCB ConceptsMicro components have redefined what is possible in PCB design. With package sizes like 01005 and 0201 becoming more common in high-density layouts, designers are now expected to pack more performance into smaller spaces than ever before. While these advancements support miniaturization and functionality, they introduce new assembly challenges, particularly with traditional solder mask and legend application processes.
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.
Insulectro & Dupont Host Technology Symposium at Silicon Valley Technology Center June 25
06/22/2025 | InsulectroInsulectro, the largest distributor of materials for use in the manufacture of PCBs and printed electronics, and DuPont, a major manufacturer of flex laminates and chemistry, invite fabricators, OEMS, designers, and engineers to attend an Innovation Symposium – Unlock the Power - this Wednesday, June 25, at DuPont’s Silicon Valley Technology Center in Sunnyvale, CA.
MVTec, Siemens Expand Technological Cooperation
06/12/2025 | MVTecMVTec Software GmbH and Siemens are expanding their technological cooperation in the field of industrial automation. To reinforce their increasingly close collaboration, Siemens joined the MVTec Technology Partner Program in May 2025.
Nordson Electronics Solutions Develops Panel-level Packaging Solution for Powertech Technology, Inc. That Achieves Yields Greater Than 99% for Underfilling During Semiconductor Manufacturing
06/11/2025 | Nordson Electronics SolutionsNordson Electronics Solutions, a global leader in reliable electronics manufacturing technologies, has developed several solutions for panel-level packaging (PLP) during semiconductor manufacturing. In one particular case, Nordson’s customer, Powertech Technology, Inc. (PTI) saw underfill yields improve to greater than 99% as they plan to transition from wafers to panels in their manufacturing operations. edwd