Flexible Bipolar Plates Made of Polymers Make It Possible to Build Compact Batteries
January 25, 2019 | Fraunhofer IISBEstimated reading time: 3 minutes
Whether used for power supply or in electric cars, current battery systems are based on a series of interconnected individual cells, which has certain disadvantages in terms of efficiency and manufacturing. Bipolar battery setups, in contrast, comprise compact stacks of individual cells. A new type of flexible and extremely thin bipolar plate allows batteries to be manufactured cost effectively.
Conventional battery systems are extremely complex. They usually consist of several individual cells that are connected with each other via wires. Not only is this costly and time-consuming, it also entails the danger of hot spots—areas in which the wires get too hot. In addition, every single one of these cells has to be packaged, meaning that a large portion of the battery consists of inactive material that does not contribute to battery performance. Bipolar batteries are designed to solve this problem by connecting the individual cells with each other using flat bipolar plates. However, this gives rise to other challenges: either the bipolar plates are made of metal and are thus prone to corrosion, or they are made of a carbon-polymer composite, in which case they have to be at least several millimeters thick as a result of the manufacturing process.
Material Savings of More Than 80%
Researchers at the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT in Oberhausen have now developed an alternative. “We manufacture bipolar plates from polymers that have been made electrically conductive,” says Dr.-Ing. Anna Grevé, department head at Fraunhofer UMSICHT. “In this way, we can produce very thin plates and—compared with conventional cells connected by wires—save over 80% of the material used.” In addition, the material offers numerous other advantages, such as the fact that it does not corrode. Another major advantage is that the material can be subsequently reshaped. This makes it possible, for example, to emboss structures, which are important for fuel cells. Moreover, the innovative new bipolar plates can be welded together, so the resulting battery system is absolutely tight. Conventional bipolar plates, in contrast, are unsuitable for welding due to the thermal and mechanical stressing of the material during manufacture. Joining them in such a way that neither gases nor liquids can pass through the joints requires seals. However, seals become quickly porous, and they also take up space. A further advantage of the new material is that the researchers are able to adapt the properties of the bipolar plates to specific requirements. “We can make plates that are so flexible that you can wrap them around your finger, as well as ones that are completely stiff,” specifies Grevé.
Cost-Effective Manufacture through Roll-To-Roll Technique
The primary challenge consisted in developing the material and the manufacturing process. “We use commercially available polymers and graphites, but the secret is in the recipe,” says Grevé. As the material is made up of about 80% graphites and only about 20% polymer, the processing methods have little in common with ordinary polymer processing. The team of researchers at Fraunhofer UMSICHT opted for the roll-to-roll technique, which allows cost-effective manufacturing, and adapted it using a lot of know-how. After all, the ingredients that go into the manufactured plates must be distributed homogeneously, and the plates also have to be mechanically stable and completely tight. Because of the initial structure of the materials, this was no easy feat. However, the experts also mastered this challenge. “We were able to fulfill all requirements in one process. Consequently, the plates can be used just as they are when they come out of the machine,” explains Grevé. Another advantage of the technique is that the plates can be manufactured in any size.
Suggested Items
SIA Praises Finalization of CHIPS Incentives to Supplement SK Hynix’s $3.87 Billion Investment in Indiana
12/20/2024 | SIAThe Semiconductor Industry Association (SIA) today released the following statement from SIA President and CEO John Neuffer commending finalization of CHIPS and Science Act manufacturing investments announced by the U.S. Department of Commerce and SK hynix. The incentives will supplement the company’s $3.87 billion investment in Indiana for advanced packaging operations and R&D.
RTX's Raytheon and Ursa Major Conduct Successful Flight Test
12/20/2024 | RTXRaytheon, an RTX business, and Ursa Major announced its advanced long-range solid rocket motor completed a successful missile flight test for the U.S. Army. The companies' combined experience and expertise in digital engineering was a critical factor in accelerating the design and development of this transformational capability.
ViTrox Welcomes Gemaddis as a New Sales Channel Partner in France
12/20/2024 | ViTroxViTrox Technologies, which aims to be the World’s Most Trusted Technology Company in delivering innovative, advanced, and cost-effective automated Machine Vision Inspection Solutions for the semiconductor and electronics manufacturing industries, is honoured to announce its partnership with Gemaddis as its new Sales Channel Partner (SCP) for the French market, effective May 2024.
GlobalFoundries Sets New Bar as Largest Semiconductor Company to Protect Innovation by Joining LOT Network
12/19/2024 | GlobalFoundriesGlobalFoundries (Nasdaq: GFS) (GF) and LOT Network announced that GF has joined the LOT Network, the world’s largest patent licensing platform and non-profit community of global companies committed to protecting themselves against costly litigation from patent assertion entities (PAEs). With this move, GF joins a community of more than 4,500 companies that include half of the top 20 largest U.S. patent holders, and half of the S&P Global 100 and Fortune 100.
Flex Factory Recognized for Manufacturing Excellence and Continuous Improvement by the Association for Manufacturing Excellence
12/19/2024 | FlexFlex announced that its Zhuhai, China site, specializing in advanced assembly, tool design and manufacturing, and metal and plastics capabilities for Lifestyle and Data Center customers, received an Excellence Award from the Association for Manufacturing Excellence (AME) for demonstrating world-class continuous improvement and results. This is the third consecutive year a Flex facility received an AME Excellence Award.